

Available online at www.sciencedirect.com





Applied Catalysis B: Environmental 82 (2008) 67-76

www.elsevier.com/locate/apcatb

## Kinetic study of photo-oxidation of NH<sub>3</sub> over TiO<sub>2</sub>

Seiji Yamazoe, Yutaka Hitomi, Tetsuya Shishido, Tsunehiro Tanaka\*

Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan Received 30 October 2007; received in revised form 19 December 2007; accepted 19 December 2007

Available online 11 January 2008

### Abstract

Kinetic study was carried out for photo-oxidation of NH<sub>3</sub> (photo-SCO:  $4NH_3 + 3O_2 \rightarrow 2N_2 + 6H_2O$ ) to elucidate the mechanisms of the photo-SCO over anatase and rutile TiO<sub>2</sub>. The reaction orders of the reactant gases reveal that the photo-SCO activity depends only on the concentration of O<sub>2</sub> with either anatase or rutile TiO<sub>2</sub>. Steady-state kinetics suggests that the rate-determining step is the formation of nitrosoamide species from surface NO species and NH<sub>2</sub> radical. The surface NO species may play an important role in the high activity of the photo-SCO. O<sub>3</sub> anion radical, which is a strong oxidant, was detected only over anatase TiO<sub>2</sub> and the concentration of surface NO species would be increased by O<sub>3</sub> anion radical. This may be the reason why anatase TiO<sub>2</sub> shows higher activity than rutile TiO<sub>2</sub>. The photo-SCO activity is enhanced as the reaction temperature increased. 100% NH<sub>3</sub> conversion and 94% N<sub>2</sub> selectivity were achieved at GHSV = 50,000 h<sup>-1</sup> at 435 K. This enhancement of the activity at higher reaction temperature is caused by (1) the increase in the surface NO species and (2) the improvement of reactivity between surface NO and NH<sub>2</sub> radical. The SCO activity is moderately high even at low temperature: the Arrhenius activation energy is only 24.4 kJ mol<sup>-1</sup>. (C) 2008 Elsevier B.V. All rights reserved.

Keywords: Ammonia oxidation; Kinetics; TiO2; Photocatalyst; SCO

#### 1. Introduction

It is desirable to remove ammonia from exhaust gas and/or waste water in industrial emission source in an environmental point of view. Ammonia can be eliminated by biological treatment, thermal combustion and catalytic oxidation. Recently, selective catalytic oxidation (SCO) of ammonia to nitrogen in the presence of excess oxygen has received much attention because this technique is promising for efficient removal of ammonia from exhaust gas [1–6]. The reaction stoichiometry in the typical SCO condition had been proposed as follows [7–12]:

$$4\mathrm{NH}_3 + 3\mathrm{O}_2 \rightarrow 2\mathrm{N}_2 + 6\mathrm{H}_2\mathrm{O} \tag{1}$$

The SCO process may be applied to remove unreacted ammonia in the selective catalytic reduction (SCR) of NO with ammonia process [13,14]. In the case of the SCO process located at the downstream of the SCR process, the low-temperature operation of the SCO is often required. Therefore, many efforts have been made in order to develop the lowtemperature SCO. Long and Yang reported that Cu- and Feexchanged ZSM-5 exhibited a good SCO activity at 623 K [1]. Gang et al. reported that Ag/Al<sub>2</sub>O<sub>3</sub> showed high activity in the SCO in the range of >433 K [3]. A number of the other catalysts, such as CuO/Al<sub>2</sub>O<sub>3</sub> [14,15], V<sub>2</sub>O<sub>5</sub>/TiO<sub>2</sub> [16], Pt-, Pd- and Rh-exchanged ZSM-5 [17], showed SCO activity. However, the aforementioned catalysts need high temperature (>433 K) in the SCO reaction.

Some kinetic studies of the SCO reaction over metal oxides have been reported in order to determine the rate-determining step and the activation energy [10,18–20]. Eqs. (2)–(5) are the most probable SCO reaction mechanism over metal oxide catalysts [10,14,19–22].

$$NH_3(+O) \rightarrow NH_2 + e^- + H^+(O)$$
 (2)

$$NH_2 + O_2 \rightarrow NO + H_2O \tag{3}$$

$$NH_2 + NO \rightarrow NH_2NO$$
 (4)

$$NH_2NO \rightarrow N_2 + H_2O$$
 (5)

It has been proposed that the rate-determining step of the SCO over metal oxide catalysts is Eq. (2) (NH<sub>3</sub> activation process) [10,18–20]. Additionally, activation energy ( $E_a$ ) of

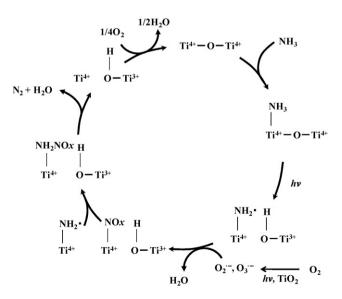
<sup>\*</sup> Corresponding author. Tel.: +81 75 383 2558; fax: +81 75 383 2561. *E-mail address:* tanakat@moleng.kyoto-u.ac.jp (T. Tanaka).

<sup>0926-3373/\$ -</sup> see front matter © 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.apcatb.2007.12.023

| Nomenclature                                                                            |                                                                           |
|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| r                                                                                       | $N_2$ production rate (mol s <sup>-1</sup> )                              |
| k                                                                                       | rate constant                                                             |
| $C_{\rm NH_3}$                                                                          | concentration of $NH_3$ (mol $L^{-1}$ )                                   |
| $C_{0_2}$                                                                               | concentration of $O_2$ (mol L <sup>-1</sup> )                             |
| α                                                                                       | reaction order of NH <sub>3</sub>                                         |
| β                                                                                       | reaction order of $O_2$                                                   |
| $k_{\pm i}$                                                                             | rate constant at Step i                                                   |
| $K_i$                                                                                   | equilibrium constant at Step <i>i</i>                                     |
| S                                                                                       | Lewis acid site on $TiO_2$                                                |
| $S^{-}$                                                                                 | reduced Lewis acid site                                                   |
| $O_{lattice}^{2-}$                                                                      | lattice oxygen                                                            |
| [S] <sub>0</sub>                                                                        | total amount of Lewis acid site on TiO <sub>2</sub>                       |
|                                                                                         | $(\text{mol } L^{-1})$                                                    |
| $[NH_2^{\bullet}-S]$ concentration of $NH_2^{\bullet}-S$ species (mol L <sup>-1</sup> ) |                                                                           |
|                                                                                         | <sup>-</sup> ] concentration of NO–S <sup>-</sup> species (mol $L^{-1}$ ) |
| $[0_{2}]$                                                                               | concentration of $O_2 (= C_{O_2}) \pmod{L^{-1}}$                          |
| T                                                                                       | reaction temperature (K)                                                  |
|                                                                                         |                                                                           |

the SCO reaction is high (76–139 kJ mol<sup>-1</sup>) [18–20]. These results indicate that the SCO of ammonia at low temperature is difficult due to the high  $E_a$  of NH<sub>3</sub> activation. Therefore, a development of new SCO system with low  $E_a$  of NH<sub>3</sub> activation is required.

Cant and Cole reported that the SCO reaction was carried out in a closed system over TiO2 photocatalyst under irradiation (photo-SCO) at room temperature although the activity was low [23]. Recently, we have reported that the photo-SCO proceeds with high activity (NH<sub>3</sub> conversion: 100%, N<sub>2</sub> selectivity: 84% at gas hourly space velocity  $(GHSV) = 25,000 \text{ h}^{-1}$ ) at room temperature over TiO<sub>2</sub> in a fixed bed flow system [24]. The photo-SCO reaction stoichiometry is same as that in the conventional SCO (Eq. (1)). The reaction mechanism of the photo-SCO over TiO<sub>2</sub> was elucidated by UV-vis, electron spin resonance (ESR) and Fourier transform infrared (FT-IR) spectroscopies and determined as shown in Scheme 1 [24,25]. Our proposed reaction mechanism is almost similar to the conventional SCO reaction mechanism. NH<sub>3</sub> is adsorbed to Lewis acid site of TiO<sub>2</sub> in the dark (Step 1). Adsorbed NH<sub>3</sub> is activated to NH<sub>2</sub> radical by trapping a photo-formed hole and a photo-formed electron reduces  $Ti^{4+}$  site to  $Ti^{3+}$ . O<sub>2</sub> reacts with an electron or a hole, which are formed under UV irradiation, to form oxygen anion radical species  $(O_2^{\bullet-} \text{ or } O_3^{\bullet-})$  (Step 3). NH<sub>2</sub> radical reacts with oxygen anion radical species to form NO without light (Step 4). The NO reacts with NH<sub>2</sub> radical and NH<sub>2</sub>NO species is generated as an intermediate (Step 5). The NH<sub>2</sub>NO species is decomposed to N<sub>2</sub> and H<sub>2</sub>O (Step 6). Finally, the reduced  $Ti^{3+}$  is re-oxidized by the reaction with O<sub>2</sub> (Step 7). Additionally, we found that the crystal phase of TiO<sub>2</sub> affects the types of oxygen anion radical [24]. Rutile TiO<sub>2</sub> generates only  $O_2$  anion radical whereas anatase TiO<sub>2</sub> forms not only  $O_2$ anion radical but also O<sub>3</sub> anion radical. The catalytic activities of various TiO<sub>2</sub> in the photo-SCO reaction indicate that O<sub>3</sub> anion radical plays a key role in the higher activity than  $O_2$  anion radical.


The photo-SCO proceeds even at room temperature, since the activation of  $NH_3$  proceeds at room temperature by photoexcitation (Step 2). Thus, the rate-determining step of the photo-SCO is different from the conventional SCO reaction and the activation energy of the photo-SCO is expected to be lower than that of the conventional SCO. In this study, we carried out the kinetic study of the photo-SCO over  $TiO_2$  using steady-state approximation not only to determine the rate-determining step of the photo-SCO reaction but also to clarify the reaction mechanism as shown in Scheme 1. The thermal effect for the photo-SCO was also investigated. Furthermore, we discussed the reactivity of  $O_3$  and  $O_2$  anion radical species in terms of kinetics.

#### 2. Experimental

#### 2.1. Preparation and characterization of catalysts

Two kinds of  $TiO_2$  (JRC-TIO-3 and JRC-TIO-8 supplied from the Japan Catalysis Society) were hydrated in distilled water for 2 h at 353 K, followed by filtration with suction pump. The sample was dried at 383 K overnight, followed by calcination in dry air at 673 K for 3 h. After the hydration and calcinaton described above, JRC-TIO-3 and JRC-TIO-8 were used in this study.

The specific surface area of the prepared JRC-TIO-3 and JRC-TIO-8 were evaluated to be 46 and 93 m<sup>2</sup> g<sup>-1</sup> by the BET method using N<sub>2</sub> adsorption isotherm at 77 K. We confirmed that the prepared JRC-TIO-3 and JRC-TIO-8 consist of rutile and anatase phases respectively by the XRD patterns. Amount of acid sites on TiO<sub>2</sub> was determined by the adsorption equilibrium method of NH<sub>3</sub> according to the previous work [24,26]. Before the adsorption equilibrium method, TiO<sub>2</sub> was evacuated at 673 K as a pretreatment.



Scheme 1. Proposed reaction mechanism of photo-SCO.

Download English Version:

# https://daneshyari.com/en/article/48262

Download Persian Version:

https://daneshyari.com/article/48262

Daneshyari.com