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a b s t r a c t

This paper presents techniques for solving the problem of minimizing investment costs on an existing gas
transportation network. The goal of this program is to find, first, the optimal location of pipeline segments
to be reinforced and, second, the optimal sizes (among a discrete commercial list of diameters) under the
constraint of satisfaction of demands with high enough pressure for all users.
The paper develops new heuristics for solving this large-scale integer NLP problem, based on a two
phases approach. The first one solves a continuous relaxation of the problem. A generalized potential for-
mulation of the gas transportation networks including valves and compressor stations is introduced in
order to find an initial point of the optimization solver. Phase two consists in choosing discrete values
of diameters only among the set of pipes that have been reinforced in the continuous relaxation. A Branch
& Bound scheme is then applied to a limited number of values in order to generate good solutions with
reasonable computational effort on real-world applications.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

The French high-pressure natural gas transmission system con-
sists of 31,589 km of pipelines (between 80 and 1000 mm in diam-
eter). regional networks embedded in this system (with about
23,000 km) are high-pressure networks (between 20 and 68 bar)
that bring gas from the main network (using compressor stations)
to city distribution networks. These regional networks irrigate a
limited geographical area and feed a substantial number of cus-
tomers. These complex structures are made up of several pipe sec-
tions of different diameters. Each section has to be adapted to the
various conditions of flow and pressure.

Although most of them are gunbarrel-like or tree-like systems,
the largest networks have several supply nodes and contain numer-
ous cycles (in the sense of graph theory).

In order to cope with increasing forecasted demand in gas, gas
transportation companies need to plan the reinforcement of these
regional transportation networks. The only way to increase capac-
ity of these networks without compressor stations is to ‘‘loop”
existing pipeline sections. In the natural gas industry, looping
means that one pipeline is laid parallel to another. This is an
important issue whose aim is to determine the cheapest set of
diameters to be added each year, insuring that user’s demands will
be satisfied with high enough pressure.

Our paper focuses on the specific case when:

� A unique maximal scenario of demand is given (one stage
problem).

� Regional transportation networks include only pipes and regula-
tors (but no compressor stations).

As the diameters are to be chosen among a finite set of available
values on each arc, this optimization problem is highly
combinatorial.

The problem of designing a piping system has been widely stud-
ied in the literature. To tackle this problem in reasonable computa-
tion times, a first class of papers dealing with pipe-network design
(of either water or gas) uses meta-heuristics such as genetic algo-
rithms, see (Abebe and Solomatine, 1998; Boyd et al., 1994; Surry
et al., 1995; Van Vuuren, 2002). A second class of papers uses meth-
ods based on continuous relaxation. Hansen et al. (1991) use a trust-
region successive linear programming method. Their algorithm
directly handles the discrete choice of diameter but each step (in
which the variation of diameter is continuous) needs a linearization
of the objective function and constraints, as well as a procedure for
adjusting the diameter in order to satisfy the lower bound on pres-
sures. De Wolf and Smeers (1996) deal only with the continuous
variables of diameter. Their objective function combines the cost
of purchasing gas at supply nodes and the investment cost on the
network. They solve the resulting nonsmooth optimization problem
using a bundle algorithm. Zhang and Zhu (1996) propose to model
the combinatorial aspect with one binary variable per diameter on
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each arc associated with a choice constraint on these variables (with
a sum of binary variables equal to one). As they consider the contin-
uous relaxation of their binary variables, they assume that they can
split an arc into several parts, each one associated with only one dis-
crete value of diameter. They prove that it is not optimal to split an
arc into more than two parts. In order to compute a solution, they
reformulate the problem as a bilevel program and use trust-region
methods. Let us remind the paper by Osiadacz and Gorecki (1995)
where a sequential quadratic algorithm is applied to a continuous
relaxation. Flowrate variables are eliminated by assuming the gas
speed on each pipeline to be constant. The continuous solution is
then rounded to the nearest discrete diameter.

This paper clearly belongs to the second class of papers but dif-
fers in two ways from the above references. First, we consider the
reinforcement problem for already existing networks. This in-
creases the nonconvexity of the model and the size of the problem.
Second, we introduce a combination of continuous relaxation and
B&B algorithm.

The paper is organized as follows: Section 2 briefly states the
problem to be solved. The continuous relaxed problem, described
in Section 3, provides the starting point of the Branch & Bound
algorithm presented in Section 4.

Numerical results on real regional networks are displayed in
Section 5. We conclude the paper in Section 6.

2. Framework

In order to transport gas on large regional networks, high-pres-
sures are used at entry points. The regional networks considered in
this study include two types of elements: on the one hand, pipe-
lines along which pressure drops depend upon diameters and
flows and, on the other hand, regulators. The latter allow additional
pressure drops in order to comply with constraints on the maxi-
mum admissible operational pressure of downstream networks.

Expanding capacities of regional networks means to identify
which (existing) pipe sections to reinforce, and to lay new pipelines
along these existing sections (such a process is called ‘‘looping”).

Our approach proceeds in two steps: (a) determination of the
location of the pipelines to be looped, and (b) choice of the size
of the new parallel pipelines. With every doubling diameter DDa

on arc a is associated a cost given by the stepwise function
caðDDaÞ depending on the laying cost, the steel price, and the
length of the pipe section.

Since we wish to minimize the investment cost, i.e., the sum of
reinforcement costs, the resulting model is stated as follows:

min
ðDD;Q ;pÞ

P
a2Apipe

caðDDaÞ

ðiÞ DDa 2 f0;D1
a ; . . . ;Dk

a; . . . ;Dag for all a 2 Apipe

ðiiÞ pi
a � pj

a ¼ CaðDIs
a þ DDs

aÞ
�5=sQajQaj for all a 2 Apipe

ðiiiÞ p 6 p 6 p

ðivÞ MT
regp P 0

ðvÞ 0 6 Q a 6 Q a 6 Qa for all a 2 Areg

ðviÞ MQ ¼ b

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð1Þ

with s :¼ 5=2 and Ca > 0 given constant depending on the length of
arc a.

Constraint (i) imposes that the diameter value, for each pipe a, is
to be chosen among a finite set fDk

ag including 0, the largest element
of which is denoted by Da. Constraint (ii) represents the Weymouth
pressure drop equation on pipe (Katz et al., 1959). Constraint (iii)
requires to keep the pressures within minimal bounds P (delivery
pressures) and maximal bounds P (maximum admissible opera-
tional pressures, supply pressures). Constraint (iv) ensures the fall
of pressure on regulators. Constraint (v) controls flow rates on reg-
ulators within minimal and maximal bounds Q and Q . Constraint
(vi) guarantees Kirchhoff’s law of flow conservation.

The nonconvexity of program (1) is due to the discrete nature of
diameters and associated cost function, and to the nonlinearity of
the pressure loss equations.

In order to move a part of the nonlinearity from the constraints
to the objective function, a first change of variables has been made:
instead of doubling diameters, we use ‘‘equivalent diameters”,
whose expression is1 Deqa :¼ ðDIs

a þ DDs
aÞ

1=s. Program (1) can be
rewritten as follows:

min
ðDeq;Q ;pÞ

P
a2Apipe

saðDeqaÞ

ðiÞ Deqa 2 fDIa;Deq1
a ; . . . ;Deqk

a; . . . ;Deqag for all a 2 Apipe

ðiiÞ pi
a � pj

a ¼ CaDeq�5
a Q ajQ aj for all a 2 Apipe

ð1-iiiÞ to ð1-viÞ

8>>>>><
>>>>>:

ð2Þ
with saðDeqaÞ :¼ caððDeqs

a � DIs
aÞ

1=sÞ and Deqa, the maximal equiva-
lent diameter corresponding to the maximal doubling diameter Da.
The resulting program is (again) a mixed nonlinear, nonconvex pro-
gram, having discrete variables Deq and continuous variables p and Q.

3. Phase I: continuous relaxation

This section is dedicated to the formulation and the resolution
of a continuous relaxation of the problem, for which a feasible
point can be computed by solving a convex problem (the potential
formulation of the network equations).

3.1. Relaxed program

The continuous relaxation allows the values Deqa of diameters
of additional pipes to be selected within a certain interval:

Deqa 2 ½DIa;Deqa� for all a 2 Apipe

We extend function sa to ½DIa;Deqa�, by making it equal to
saðDeqkþ1

a Þ over ½Deqk
a;Deqkþ1

a �. This stepwise function can be
approximated by a continuous concave function:

/aðDeqaÞ ¼ aaðDeqs
a � DIs

aÞ
1=s

Nomenclature
N set of nodes of the network
A: set of arcs (union of sets Apipe and Areg)
Apipe: set of pipes
Areg: set of regulators
Pi, pi :¼ ðPiÞ2 pressure and energy head associated with node i
Qa, DIa, DDa flow, initial diameter and doubling diameter on arc a

(since the network is expanded by laying out new pipes
in parallel what is called looping)

M the node-arc incidence matrix, whose (column) parti-
tion for pipes and regulators are called Mpipe and Mreg,
respectively. Inside these sparse matrices, the only
nonzeros elements give an arbitrary direction to the
arc a by setting 1 for the inlet node and �1 for the outlet
node.

1 With two pipes in parallel (1&2) and the gas flowing in the same direction for
both pipes, we can write Qa ¼ ððpi

a � pj
aÞ � C�1

a � D
5
a Þ

1=2; a ¼ 1;2. Substituting these
expressions of flows in the following expression: Deq ¼ ðCa:ðpi

a� pj
aÞ�1 :ðQ1 þ Q2Þ2Þ1=5,

we obtain the equivalent diameter formula.
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