
Continuous Optimization

ISTMO: An interval reference point-based method for stochastic multiobjective
programming problems

Maria M. Muñoz *, Francisco Ruiz
Department of Applied Economics (Mathematics), School of Business, University of Málaga, Calle Ejido, 6, 29071-Málaga, Spain

a r t i c l e i n f o

Article history:
Received 23 October 2007
Accepted 10 June 2008
Available online 19 June 2008

Keywords:
Multiple objective programming
Stochastic programming
Probability efficiency
Interactive methods
Reference point

a b s t r a c t

In this paper, we present an interactive algorithm (ISTMO) for stochastic multiobjective problems with
continuous random variables. This method combines the concept of probability efficiency for stochastic
problems with the reference point philosophy for deterministic multiobjective problems. The decision
maker expresses her/his references by dividing the variation range of each objective into intervals, and
by setting the desired probability for each objective to achieve values belonging to each interval. These
intervals may also be redefined during the process. This interactive procedure helps the decision maker
to understand the stochastic nature of the problem, to discover the risk level (s)he is willing to assume for
each objective, and to learn about the trade-offs among the objectives.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

When facing the analysis and resolution of a real decision prob-
lem using a mathematical optimization model, we can find situa-
tions where the values of some important elements (parameters)
for the decision making process are unknown at the moment when
the decision is made. Solving such a problem is not a trivial task,
because an objective function must be optimized, but we do not
know the values of this function because they depend on random
parameters. The fact that the achievable objective values are
uncertain makes the election harder, because a random variable
does not allow an order relation. One typical problem with these
features is portfolio optimization. The election of the securities
for the portfolio is not a typical optimization problem, because
the future evolution of the prices of the securities is unknown. In
these cases, the decision is said to be risky.

The previous comments might lead us to conclude that, when an
optimization problem has a stochastic objective function (that is,
the function depends not only on the decision variables, but also
on random parameters), each of the possible elections may be
equally ‘‘good” or ‘‘bad”. But this is not certain in general. Even
though we cannot know the value that the objective function will
achieve (in the previous example, the future prices of the securi-
ties), if we know the probability distribution of the stochastic objec-
tive, it is possible to obtain a ‘‘partial order”, using the statistical
features (expected value, variance, quantiles, etc.). Basically, in such
a problem, two criteria must be taken into account so as to obtain

this partial order: which level can be regarded as satisfactory for
the objective function, and how much risk do we want to assume.

The solution processes that can be found in the scientific litera-
ture make use in some way of these ideas. In most of them, the two
aforementioned criteria, expected value and risk, are taken into ac-
count. The differences between the solution methods lay on the
importance given to these two criteria and on the way the decision
maker’s preferences are considered. Among all the criteria used in
the literature, the most widely used in real problems is the effi-
ciency criterion called expected value-variance, proposed by Nobel
Prize Markowitz (1952). When this criterion is applied, the sto-
chastic problem is transformed into a deterministic one with two
objectives, where the expected value of the stochastic objective
is to be maximized. Besides, the objective’s variance is used as a
risk measure (so that it is understood that if the variance is mini-
mized, so is the risk associated to the objective). Making use of this
idea, a set of efficient expected value-variance solutions is gener-
ated. This set is shown to the decision maker, who has to choose
the solution which best fits his/her preferences.

On the other hand, real decision problems always involve the
simultaneous consideration of several conflicting criteria. These
facts motivate the study of the so-called stochastic multiobjective
programming (SMOP) problems.

The solution of this kind of problem is far from being a trivial
task, because two of the main hypotheses of classical mathematical
programming are relaxed: the values of some of the parameters of
the problem are unknown, and the decision maker (DM) wishes to
optimize several conflicting criteria at the same time. Many theo-
retical works that tackle these problems can be found in the scien-
tific literature. Among them, the books of Goicoechea et al. (1982),
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Slowinski and Teghem (1990), Stancu-Minasian (1984) can be
highlighted, where the issue of determining solutions for SMOP
is analyzed from different points of view: efficiency analysis, deter-
mination of satisfying solutions, compromise programming ap-
proaches, use of interactive procedures, etc. On the other hand,
some applications of SMOP problems to real decisions have also
been reported in the literature. For example, in Ben Abdelaziz
and Mejri (2001), a stochastic multiobjective model is proposed
to determine the appropriate releases decisions for various water
reservoirs to satisfy multiple conflicting objectives (minimization
of salinity, minimization of pumping costs). In Ballestero (2001),
a stochastic problem is used to manage a farm and in Ballestero
(2005) nine real stochastic goal programming applications are de-
scribed. In both works, the author claims that the solutions of some
economic and technological problems, which are usually treated as
deterministic models, can be improved if the models are reformu-
lated as stochastic ones.

In order to solve a multiobjective problem, in such a complex
environment as in SMOP, the DM needs to rely on a method that
can assist him/her in learning about the real structure of the prob-
lem. Besides, the method must also be capable of guiding him/her
through the, usually very large, efficient set, towards his/her most
preferred solution. Interactive methods have proved to be the most
adequate ones for this double task: learning and guiding. The basic
structure of an interactive method is very simple. One (or several)
efficient solution is determined and shown to the DM. If (s)he is
satisfied with the current solution, the procedure ends. Otherwise,
the DM is required to give additional information about her/his
preferences; next, a new efficient solution is determined using this
information, and so on (see Miettinen (1999) for a description and
overview of interactive procedures).

Not that many interactive methods for SMOP problems have
been reported in the literature. Besides, most of them have been
specifically designed for SMOP problems with discrete random
variables. Namely, the PROMISE (Urli and Nadeau, 1990), STRANGE
(Teghem et al., 1986) and PROMISE/scenarios (Urli and Nadeau,
2004) methods are meant to solve problems with discrete random
parameters or with incomplete information. Specifically, the
PROMISE method solves problems where the probability distribu-
tions of the random parameters are unknown, and only incomplete
information about them (worst value, best value and central ten-
dency measure) is available. The STRANGE, and PROMISE/scenarios
methods have been developed to solve problems where the ran-
dom parameters are represented by discrete random variables
and take a finite number of values that are assigned known subjec-
tive probabilities (scenarios). All these procedures extend the well-
known deterministic interactive method STEM (see Benayoun et al.
(1971)) to SMOP problems. These interactive methods have the
same common feature: in the interactive phase, if the DM is not
satisfied with the current solution, (s)he is requested to choose a
single objective, which is the objective that the DM wishes to im-
prove in the next iteration (STRANGE), or the objective that the DM
allows to become worse in order to improve others (PROMISE and
PROMISE/scenarios) must be chosen. This fact can involve placing
the rest of the objectives in a second level. We believe that it is bet-
ter to let the DM express her/his opinions about all the objectives,
so that the next iteration will better reflect her/his preferences and
trade-offs among the criteria.

On the other hand, the only method designed so far for SMOP
problems where the random parameters are continuous random
variables with known probability distributions (which is the prob-
lem faced in this paper) is the PROTRADE method (Goicoechea
et al. (1982)) This method is designed for stochastic problems with
non-linear objective functions and constraints and establishes gen-
eral hypotheses about these probability distributions. The main
features of this method are the following:

– At each iteration, a linear combination of the expected values
of the stochastic objective functions is optimized. Therefore,
the solutions obtained are weakly efficient with respect to
the expected value criterion (or properly efficient if all the
weights of the linear combination are strictly positive). In Sec-
tion 3.1, it will be seen that this efficiency criterion is outper-
formed in many cases by others.

– In order to obtain the weights, a multiattribute utility function
is used to interact with the DM. This is an important drawback,
because the elicitation of the parameters of a hypothetical util-
ity function is, in general, a very hard task (if not impossible)
for the DM.

– In the interactive phase if the DM is not satisfied with the cur-
rent solution, (s)he is requested to choose a single objective,
which is the objective that the DM wishes to improve in the
next iteration (like in STRANGE). For this objective function,
the DM must fix a level to be reached, and a probability. These
preferences are incorporated to the optimization as a hard
probabilistic constraint, and this modifies the feasible set of
the problem, which may be empty at some point. Besides, this
reduces the number of possible iterations to the number of
objectives of the problem. If the DM is not satisfied with the
solution after these iterations, the authors propose to re-esti-
mate the parameters of the utility function. Therefore, the pro-
cess cannot be regarded as comfortable and intuitive for the
DM.

– The information shown to the DM at each step is the expected
value of each objective function, and the probability to achieve
this value. But although the expected value is a significant
piece of information, it does not provide by itself an overall
view of the possible values that the stochastic objective can
take.

In our opinion, there are three key features for the success of an
interactive stochastic method. First, the DM must find it reasonably
comfortable and natural to give the information required by the
method. This is important because otherwise the DM will very
likely give inconsistent information, and consequently, the proce-
dure will not be reliable. Besides this, the DM also needs to rely
on the procedure, so that (s)he can learn about the structure of
the problem throughout the process. Second, based on this reliable
information, the algorithm must be able to find (or at least, to
approximate as closely as possible) the DM’s most preferred solu-
tion in a reasonable number of iterations. Finally, the method must
aid the DM in understanding the stochastic nature of the problem,
showing her/him the risk level associated with each solution, and
thus, helping her/him to determine the risk (s)he is prepared to as-
sume. These three aspects have been taken into account to develop
the interactive procedure described in this paper.

Taking into account all these considerations, we have developed
a new interactive method, called ISTMO (Interval STochastic Mul-
tiObjective programming algorithm), based on the achievement
scalarizing function approach, which adapts the reference point
philosophy to stochastic problems. To this end, we propose a novel
modification of the classical achievement functions, which allows
the consideration of probabilities given by the DM. Therefore, the
idea underlying this algorithm is to make use of the benefits of
the reference point approach at the same time that the probabilis-
tic aspects of the problem are incorporated in the iterations. This
interactive method can be used to solve both single objective and
multiobjective problems, with continuous random parameters.
The main idea of the algorithm is to let the DM divide the range
of possible values of each objective into some intervals (e.g. inter-
vals of values regarded as ‘‘very poor”, ‘‘poor”, ‘‘fair”, ‘‘good” and
‘‘very good”), and to let her/him control, during the interactive pro-
cess, the probability for the objective to get values inside each
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