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Abstract

Let S be a set of n points in three-dimensional Euclidean space. We consider the problem of positioning a plane p
intersecting the convex hull of S such that min{d(p, p); p 2 S} is maximized. In a geometric setting, the problem asks for
the widest empty slab through n points in space, where a slab is the open region of R3 that is bounded by two parallel
planes that intersect the convex hull of S. We give a characterization of the planes which are locally optimal and we
show that the problem can be solved in O(n3) time and O(n2) space. We also consider several variants of the problem
which include constraining the obnoxious plane to contain a given line or point and computing the widest empty slab
for polyhedral obstacles. Finally, we show how to adapt our method for computing a largest empty annulus in the
plane, improving the known time bound O(n3 log n) [J.M. Dı́az-Báñez, F. Hurtado, H. Meijer, D. Rappaport, T. Sel-
larès, The largest empty annulus problem, International Journal of Computational Geometry and Applications 13 (4)
(2003) 317–325].
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Location science is a classical field of operations
research that has also been considered in the com-

putational geometry community. A class of prob-
lems from this field, often referred to as maximin
facility location, deals with the placement of unde-
sirable or obnoxious facilities. In these problems
the objective is to maximize the minimal distance
between the facility and a set of input points. Fur-
thermore, in order to ensure that the problems are
well-defined, the facility is normally constrained to
go through some sort of bounding region, such as
the convex hull or bounding box of the input
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points. Applications of these problems go well be-
yond the field of location science. For instance,
splitting the space using cuts that avoid the input
points is useful in areas like cluster analysis, robot
motion-planning and computer graphics.

Maximin facility location problems have re-
cently been considered in computational geometry.
Maximin criteria have been investigated in 2-d for
the optimal positioning of points [25,4], lines [13],
anchored lines [12], and circumferences [8]. When
the facility is a line, the problem is equivalent to that
of computing a widest empty corridor, i.e., a largest
empty open space bounded by two parallel lines.
Variants of the problem have also been considered
and include corridors containing k input points
[16,22,6], dynamic updates [16,22] and L-shaped
corridors [7]. Most of the results to date are two-
dimensional and, with a few exceptions (e.g., [12]),
little progress has been reported in three dimen-
sions. In a recent work [14], a bichromatic separat-
ing problem has been solved in three dimensions.

The most classical versions of facility location
problems consider the positioning of one or several
point-like facilities. Nowadays, there is a growing
body of research on the location of non-point
facilities. For example, line location problems have
been extensively studied both in the plane [17,23]
and in the three-dimensional space [24,5]. See [9]
for a recent survey on the current state-of-art of
these problems. In this paper, we deal with the
maximin location of a plane in 3-d. We formulate
the obnoxious plane problem, OPP, as follows: Gi-
ven a set S of n points in R3, find a plane p inter-
secting the convex hull of S which maximizes the
minimum Euclidean distance to the points.

Notice that, in 2-d, our problem reduces to that
of computing the widest empty corridor through a
set of points in the plane. This problem has been
solved in O(n2) time and O(n) space [13]. We ex-
tend the definition of corridor through a point
set from R2 to R3 as follows: a slab through S is
the open region of R3 that is bounded by two par-
allel planes that intersect the convex hull of S. The
width of the slab is the distance between the
bounding planes. Thus, we are interested in finding
the widest empty slab.

It is natural to consider a ‘‘dual’’ version of
our problem, where the goal is to minimize the

maximal distance between the plane and a set of
input points. This minimax location problem was
solved in [15] for 3-d using techniques different
from our own. Even for 2-d, the approaches used
to solve the minimax [18] and the maximin [13]
versions are very different.

The rest of the paper is organized as follows.
In Section 2, we present some notation and preli-
minary results. In Section 3, we describe an algo-
rithm to compute an obnoxious plane in O(n3)
time and O(n2) space. Other variants, obtained
by constraining the optimal plane p to go through
a given line or given point, are described in Section
4, and solved in O(n log n) and O(n2+e) time,
respectively. In Section 5, we compute the widest
empty slab through a set of polyhedral obstacles
within the same bounds as the OPP. Section 6 pre-
sents a reduction of the largest empty annulus
problem to our problem. Finally, Section 7
contains some concluding remarks and open
problems.

2. Characterization of candidate planes

In this section we describe a simple formula to
compute the width of a slab and derive necessary
conditions for slab optimality.

Observation 1. Let p and r be two distinct parallel
planes with (common) unit normal ~n. Let p and q

be arbitrary points on p and r, respectively. Then,
distðp; rÞ ¼ j~n � ðq� pÞj.

The following lemma characterizes candidate
solutions for the OPP,

Lemma 1. Let p* be a solution to an instance of

OPP and let p1 and p2 be the bounding planes of the

slab generated by p*. Then, exactly one of the

following conditions must hold:

(a) Each of p1 and p2 contains exactly one point
of S, p1 and p2 respectively, such that

p2 � p1 is orthogonal to p*.

(b) There are points S1 = {p11, . . ., p1h}�S on p1

and S2 = {p21, . . ., p2k} � S on p2 such that

h P 2, k P 1 and S1 [ S2 lie on a common

plane s that is orthogonal to p*.
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