
Path relinking and GRG for artificial neural networks q

Abdellah El-Fallahi a, Rafael Martı́ a,*, Leon Lasdon b

a Departamento de Estadı́stica e Investigación Operativa, Universitat de València, 46100 Burjassot (Valencia), Spain
b Department of Management Science and Information Systems, The University of Texas at Austin, Austin, TX 78712, USA

Received 30 June 2003; accepted 20 February 2004
Available online 29 September 2004

Abstract

Artificial neural networks (ANN) have been widely used for both classification and prediction. This paper is focused
on the prediction problem in which an unknown function is approximated. ANNs can be viewed as models of real sys-
tems, built by tuning parameters known as weights. In training the net, the problem is to find the weights that optimize
its performance (i.e., to minimize the error over the training set). Although the most popular method for training these
networks is back propagation, other optimization methods such as tabu search or scatter search have been successfully
applied to solve this problem. In this paper we propose a path relinking implementation to solve the neural network
training problem. Our method uses GRG, a gradient-based local NLP solver, as an improvement phase, while previous
approaches used simpler local optimizers. The experimentation shows that the proposed procedure can compete with
the best-known algorithms in terms of solution quality, consuming a reasonable computational effort.
� 2004 Elsevier B.V. All rights reserved.

Keywords: Neural networks; Metaheuristics; Evolutionary computation

1. Introduction

Artificial neural networks offer a general frame-
work for representing non-linear mappings from
several input variables to several output variables.
They are built by tuning a set of parameters

known as weights, and can be considered as an
extension of the many conventional mapping tech-
niques. In classification or recognition problems
the net�s outputs are categories, while in prediction
or approximation problems they are continuous
variables. Although this paper is focused on the
prediction problem, most of the key issues in the
net functionality are common to both.

In the process of training the net (supervised
learning), the problem is to find the values of the
weights w that minimize the error across a set of
input/output pairs (patterns) called the training

0377-2217/$ - see front matter � 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.ejor.2004.08.012

q Research partially supported by the Ministerio de Ciencia
y Tecnologı́a of Spain: TIC2003-C05-01/TIC2002-10886E and
by the AVCiT of the Generalitat Valenciana: Grupos03/189.

* Corresponding author. Tel.: +34 96 386 4362; fax: +34 96
386 4735.

E-mail address: rafael.marti@uv.es (R. Martı́).

European Journal of Operational Research 169 (2006) 508–519

www.elsevier.com/locate/ejor

mailto:rafael.marti@uv.es 


set E. For a single output and input vector x, the
error measure is typically the root mean squared
difference between the predicted output p(x,w)
and the actual output value f(x) for all the ele-
ments x in E (RMSE); therefore, the training is
an unconstrained non-linear optimization prob-
lem, where the decision variables are the weights
and the objective is to reduce the training error.
Ideally, the set E is a representative sample of
points in the domain of the function f that we
are approximating; however, in practice it is usu-
ally a set of points for which we know the f-value.

Min
w

errorðE;wÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
x2Eðf ðxÞ � pðx;wÞÞ2

jEj

s
:

The main goal in the design of an ANN is to
obtain a model which makes good predictions
for new inputs (i.e., to provide good generaliza-
tion). Therefore the net must represent the system-
atic aspects of the training data rather than their
specific details. The standard way to measure the
generalization provided by the net consists of
introducing a second set of points in the domain
of f called the testing set T. We assume that no
point in T belongs to E and f(x) is known for all
x in T. Once the optimization has been performed
and the weights have been set to minimize the
error in E(w = w*), the error across the testing
set T is computed (error(T,w*)). The net must ex-
hibit a good fit between the target f-values and the
output (prediction) in the training set and also in
the testing set. If the RMSE in T is significantly
higher than that one in E, we will say that the
net has memorized the data, instead of learning
them (i.e., the net has over-fitted the training data).

If we consider a net with too few weights, it will
not be able to fit the training data, while too many
weights may provide a perfect fit to the training
data, but a poor fit over the test set T. There is
no direct rule to compute the optimum number
of parameters when designing a neural net. The
tradeoff between the flexibility and generalization
properties of the system must be empirically deter-
mined in each particular case.

Several models inspired by biological neural
networks have been proposed throughout the
years, beginning with the perceptron introduced

by Rosemblatt (1962). He studied a simple archi-
tecture where the output of the net is a transforma-
tion of a linear combination of the input variables
and the weights. The transformation g is a thres-
hold activation function where g(x) = � 1 for
x < 0 and g(x) = 1 for x > 0. This model has been
the subject of extensive study in the statistics liter-
ature under the generic name of ‘‘logistic discrim-
ination’’ where the activation function is given by
the sigmoid function g(x) = 1/(1 + e�x), which
produces a smooth approximation to the original
step function.

Minsky and Papert (1969) showed that the per-
ceptron can only solve linearly separable classifica-
tion problems and is therefore of limited interest.
A natural extension to overcome its limitations is
given by the so called multilayer-perceptron or sim-
ply multilayer neural networks, consisting of a set
of nodes N and a set of arcs A. In two-layered net-
works, N is partitioned into three subsets: NI,
input nodes, NH, hidden nodes and NO, output
nodes. The arcs go from NI to NH or from NH to
NO; in this sense we say that the net is a layered
graph. We assume that there are n input variables,
so jNIj = n, and a single output. The neural net-
work has m hidden neurons (jNHj = m) with a bias
term in each hidden neuron.

Kolmogorov (1957) proved that every continu-
ous function of several variables can be repre-
sented as the superposition of a small number of
one-variable functions with a certain accuracy
level. This result explains, in a theoretical sense,
why neural networks work, but in practice it is
of limited interest. If we put Kolmogorov�s theo-
rem in neural network terms, we will obtain a
net with non-smooth activation functions that de-
pend on the mapping that we are trying to approx-
imate and provide poor generalization. Recent
studies have proved that multilayer networks with
one hidden layer and specific ‘‘squashing’’ func-
tions are able to approximate any function. Hor-
nik et al. (1989) show that neural networks are
universal approximators and they conclude that
any lack of success in applications must arise from
inadequate learning or an insufficient number of
hidden units. However, practical results show that
in some ‘‘difficult’’ functions, neural networks pro-
vide approximations of low quality.

A. El-Fallahi et al. / European Journal of Operational Research 169 (2006) 508–519 509



Download	English	Version:

https://daneshyari.com/en/article/482775

Download	Persian	Version:

https://daneshyari.com/article/482775

Daneshyari.com

https://daneshyari.com/en/article/482775
https://daneshyari.com/article/482775
https://daneshyari.com/

