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Abstract

In this paper, the economic and economic-statistical design of a v2 chart for a maintenance application is considered.
The machine deterioration process is described by a three-state continuous time Markov chain. The machine state is unob-
servable, except for the failure state. To avoid costly failures, the system is monitored by a v2 chart. The observation pro-
cess stochastically related to the machine condition is assumed to be multivariate, normally distributed. When the chart
signals, full inspection is performed to determine the actual machine condition. The system can be preventively replaced
at a sampling epoch and must be replaced upon failure; preventive replacement costs less than failure replacement. The
objective is to find the optimal control chart parameters that minimize the long-run average maintenance cost per unit
time. For the economic-statistical design, an additional constraint guaranteeing the occurrence of the true alarm signal
on the chart before failure with given probability is considered. For both designs, the objective function is derived using
renewal theory.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Maintenance is defined as the combination of all technical and associated administrative actions intended
to retain a machine system in a state in which it can perform its required function. Several types of mainte-
nance policies have been considered in the literature, e.g. corrective maintenance, age-based maintenance
and condition-based maintenance (CBM). CBM is the maintenance policy in which preventive maintenance
is triggered after identifying a symptom of impending failure with the aid of condition-monitoring techniques.

For CBM optimization problems, it is always assumed that the true states of the system are not observable
and only partial information is available from regular condition monitoring or sampling. The observation pro-
cess is stochastically related to the unobservable machine state, so that condition monitoring for maintenance
purposes is similar to quality control. Several kinds of CBM models have appeared in the maintenance literature,

0377-2217/$ - see front matter � 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.ejor.2007.05.002

* Corresponding author. Tel.: +1 416 978 4184; fax: +1 416 978 7753.
E-mail address: makis@mie.utoronto.ca (V. Makis).

Available online at www.sciencedirect.com

European Journal of Operational Research 188 (2008) 516–529

www.elsevier.com/locate/ejor

mailto:makis@mie.utoronto.ca


such as a proportional hazards model in Makis and Jardine (1992), a random coefficient regression model in Lu
and Meeker (1993), a counting-process model in Aven (1996), a state-space model in Christer et al. (1997), an
optimal-stopping model in Makis et al. (1998), and a hidden Markov model in Makis and Jiang (2003), among
others. However, none of the above existing CBM models deals with a multivariate observation process.

Due to the availability of advanced condition-monitoring technologies that are able to collect and store
large amount of process data on-line, multivariate observations are available in modern manufacturing.
For better CBM optimization, we should consider a multivariate observation process which is both cross
and auto-correlated. CBM model development for multivariate observations is a challenging topic. Multivar-
iate modeling of oil data for CBM purposes in our previous research (Wu and Makis, submitted for publica-
tion) showed very good results and further motivated our interest in applying multivariate statistical process
control (SPC) concepts and methodologies in CBM optimization. In this paper, we consider the problem of
designing a multivariate control chart for equipment condition monitoring and maintenance decision-making.

Nomenclature

qi,j the instantaneous transition rate of the state process
Q the transition rate matrix of the state process
k1 = q01 the transition rate of the system from state 0 to state 1
k2 = q12 the transition rate of the system from state 1 to state 2
k3 = q02 the transition rate of the system from state 0 to state 2
t0 = k1 + k3 1/mean time the machine is in state 0
t1 = k2 1/mean time the machine is in state 1
pi,j the transition probability of the embedded Markov process (pij = qij/ti,i 5 j)
P the transition probability matrix
pi,j(t) the transition probability of the continuous time Markov process
P(t) the transition probability matrix of the continuous time Markov process
s0 sojourn time of the system in state 0 (random variable �exp(t0))
s1 sojourn time of the system in state 1 (random variable �exp(t1))
(l0, R0) the parameters of the multivariate normal distribution of the observation process when the sys-

tem is in-control
(l1, R0) the parameters of the multivariate normal distribution of the observation process when the sys-

tem is in the warning state 1
d the parameter of the non-central chi-square distribution
k the dimensionality of the multivariate observation process
Ta the time to the first alarm on the chart (false alarm or true alarm)
Tf the time to the system failure
Ca inspection cost
Cp preventive replacement cost (Ca is not included)
Cf failure replacement cost (the necessary inspection cost is included)
CS sampling cost
C0 operating and maintenance cost rate when the system is in state 0
C1 operating and maintenance cost rate when the system is in state 1
h sampling interval (decision variable)
UCL upper control limit of the v2 control chart (decision variable)
a type I error of the chi-square control chart (determined by UCL)
b type II error of the chi-square control chart (determined by UCL)
C(UCL,h) objective function, expectation of the long-run average cost per unit time
AC long-run average cost per unit time
CL process cycle length
CC process cycle cost
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