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Abstract

This paper studies polyhedral methods for the quadratic assignment problem. Bounds on the objective value are
obtained using mixed 0–1 linear representations that result from a reformulation–linearization technique (rlt). The rlt pro-
vides different ‘‘levels’’ of representations that give increasing strength. Prior studies have shown that even the weakest
level-1 form yields very tight bounds, which in turn lead to improved solution methodologies. This paper focuses on imple-
menting level-2. We compare level-2 with level-1 and other bounding mechanisms, in terms of both overall strength and
ease of computation. In so doing, we extend earlier work on level-1 by implementing a Lagrangian relaxation that exploits
block-diagonal structure present in the constraints. The bounds are embedded within an enumerative algorithm to devise
an exact solution strategy. Our computer results are notable, exhibiting a dramatic reduction in nodes examined in the
enumerative phase, and allowing for the exact solution of large instances.
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1. Introduction

The standard mathematical formulation of the quadratic assignment problem is as follows

QAP : min
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The problem is so named because the objective is to optimize a quadratic function of binary variables over the
assignment polytope X. The objective contains no quadratic expressions xijxkl having i = k or j = l since the x

binary restrictions force xijxkl = xij if i = k and j = l, and the x binary and assignment restrictions together
force xijxkl = 0 otherwise. We use the abbreviations qap and QAP throughout the paper to refer to ‘‘quadratic
assignment problem’’ and problem QAP above, respectively. For notational convenience, we henceforth let all
summations run from 1 to n unless noted otherwise.

The qap is among the most difficult NP-hard combinatorial optimization problems. In theory, it can be
solved by enumerating the n factorial feasible binary solutions, and by selecting one that yields a minimal
value. But from a practical point of view, it is extremely challenging, with exact procedures tending to fail
for problem sizes of about n = 25 to n = 30, i.e. for 625–900 variables.

Among exact methods, branch-and-bound approaches have been the most successful. Here, the intent is to
implicitly enumerate over the set of solutions, using lower bounds to prune branches of the binary search tree.
The key challenge has been to obtain tight bounds that permit effective pruning and that are not too expensive
to compute. Interestingly, the qap has proven itself more challenging than other classes of NP hard problems
in terms of the size instances that can be solved. A partial explanation is that the majority of test problems
suffer from a homogeneous objective function which tends to hurt the pruning process.

Our prior research on the qap has led to computational advances, and pointed the way for the current
study. These earlier efforts were based on the application of a reformulation–linearization-technique (rlt) to
QAP. The rlt recasts QAP as a mixed 0–1 linear program via two steps. It first reformulates the problem
by constructing redundant nonlinear restrictions, obtained by multiplying the equality constraints of X by
product factors of the binary variables. Thereafter, it linearizes the objective and constraints by substituting
a continuous variable for each distinct nonlinear term. Depending on the product factors used to compute
the redundant restrictions, different formulations emerge. The result is an n-level hierarchy of mixed 0–1 linear
representations of QAP. Each level of the hierarchy provides a program whose continuous relaxation is at
least as tight as the previous level, with the highest level giving a convex hull representation.

The weakest level-1 rlt form, which follows from the work of [2,3], was shown [1,14] to subsume and unify
alternate linear representations of QAP, and the resulting bounds to dominate the majority of published works
in terms of relaxation strength. In addition, this form has a block-diagonal structure [1] that lends itself to
efficient solution methods; in particular, to a Lagrangian relaxation with special structure in the subproblem
as well as the dualized constraints. (Also see [10] for a different interpretation of this same decomposition and
bound.) For QAP of size n, the subproblems consist of n2 + 1 separate linear assignment problems, n2 of size
n � 1 and one of size n. The dualized equality constraints essentially set one family of variables equal to
another, so that each such restriction has exactly two nonzero entries, one 1 and one �1. The overall approach
motivates a monotonic increasing sequence of lower bounds, and is referred to as a dual ascent strategy.

Bounds from the level-1 rlt were strategically implemented within enumerative algorithms [11–13], resulting
in marked success. Well-known test problems up to size n = 22 were solved in [11]. Other problems solved
include [12] the size n = 25 instance from [16], and the Krarup 30a [13]. References to these classical test cases
are found in QAPLIB [7]. The only competitive methods of which we are aware are due to Brixius and Ans-
treicher [6] and Anstreicher et al. [5], which use convex quadratic programming bounds relaxations as in [4].

Based on our successes with the level-1 rlt representation, we turn attention in this paper to the level-2 form.
This program provides even tighter bounds than level-1, but at the price of increased size. The challenge is to
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