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Abstract

In this paper, we provide a heuristic procedure, that performs well from a global optimality point of view, for an
important and difficult class of bilevel programs. The algorithm relies on an interior point approach that can be inter-
preted as a combination of smoothing and implicit programming techniques. Although the algorithm cannot guarantee
global optimality, very good solutions can be obtained through the use of a suitable set of parameters. The algorithm
has been tested on large-scale instances of a network pricing problem, an application that fits our modeling framework.
Preliminary results show that on hard instances, our approach constitutes an alternative to solvers based on mixed 0–1
programming formulations.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Our aim in this work is to design an efficient algorithm for solving a class of bilevel programs upon which
pricing and revenue management problems have been based (see [9,22,23]). Bilevel programming, or math-
ematical programming with equilibrium constraints (MPEC), is a branch of mathematics concerned with
the optimization of an objective function over the solution set of some mathematical program [32,33]. It
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is closely related to Stackelberg games, where a leader incorporates within her decision process the reaction
of the followers to her course of action. It can be fairly argued that all decision-making processes involving
variables that are not in the direct control of the leader fit this framework. Examples of such instances
abound in industry or government, where the impact of policies on customers should be evaluated before
they are implemented. Its mathematical formulation is:

ðBP Þ min
ðu;vÞ

F ðu; vÞ

u 2 U � Rnu ;

v 2 arg min
v2V ðuÞ�Rnv

f ðu; vÞ;

(

where u and v are respectively, the upper and lower-level variables. It is well known that bilevel program-
ming is intractable (see e.g. [19,34,1]), yielding different research avenues. One trend focuses on exact algo-
rithms. Indeed, it is sometimes possible to transform a bilevel program into a (one-level) mixed 0–1
program (see e.g. [1]). Although this has the advantage that general-purpose solvers can be used, this frame-
work tends to break down on large instances.

Another line of attack consists in replacing the follower�s optimization problem, whenever it is convex,
by its stationarity conditions. This yields a one-level program with complementarity constraints, known as
MPEC [25]. The complementarity constraints, that hide the combinatorial structure of the problem, are
particularly difficult to handle. Moreover, MPECs are ill-structured in the sense that they generally satisfy
no constraint qualification, and that stationarity can fail to be characterized by a Karush–Kuhn–Tucker
system, and that general-purpose NLP solvers may fail to uncover such local minima or even mere station-
ary points.1 Different approaches have been developed to solve MPECs, and we mention three that are re-
lated to our line of attack. First, the implicit programming approach (see e.g. [26,25,11]) can be applied
when the follower�s choice is unique for every decision made by the leader. It usually leads to the use of
nonsmooth analysis techniques [8]. Next, in the smoothing approach [12,16,17,20,30], one reformulates
the complementarity constraints as nondifferentiable constraints and then applies smoothing techniques
on these constraints.2 A third approach is provided by the algorithm PIPA of Luo et al. [25], which is based
on interior-point methods (see however [24]). From a practical point of view, one drawback of these tech-
niques is that they guarantee local optimality, at best, under a variety of strong assumptions.

Bilevel programming is particularly suited at modeling pricing problems. In this paper, we focus on a
network pricing problem (MAXTOLL in the sequel) that has been defined and analyzed by Labbé et al.
[22,23]. In this model, the follower consists in travelers moving between their respective origin and destina-
tion, using only shortest paths. At the upper level, the leader has the power to levy tolls on a subset of road
segments, and aims at maximizing his revenue. The leader�s dilemma is to avoid tolls too low—because they
produce low revenue—, and tolls too high—because they urge the network users to choose toll-free paths. It
was recently shown that MAXTOLL, even in its simplest form, is strongly NP-hard [27].3

Besides toll optimization, variants of the basic model can be useful for pricing purposes in the airline and
telecommunication industries [9]. See also [2] for a related model with applications to tax credits in biofuel
production. Actually, our algorithm can be applied to a much larger class of problems, i.e., bilevel pro-
grams with bilinear objectives and linear constraints.

In this paper, our aim is to combine the implicit programming and smoothing techniques, and design an
algorithm that is both efficient on large realistic instances and performs well from a global optimality point
of view. Our choice to study the special case of MAXTOLL has been motivated both by its practical

1 Note however that recent attempts at tackling MPECs with general NLP solvers such as SQP solvers [14,15] or interior-point
solvers [3] have been successful, to some extent.

2 This technique originated in works on complementarity problems. For references, see [5,13].
3 The classic reference on NP-hardness is [18].
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