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Abstract This paper is concerned with developing a technique to compute in a very precise way the 
distribution of Weierstrass points on the members of any 1-parameter family C a , a ∈ C , of Gorenstein 
quintic curves with respect to the dualizing sheaf K C a . The nicest feature of the procedure is that 
it gives a way to produce examples of existence of Weierstrass points with prescribed special gap 
sequences, by looking at plane curves or, more generally, to subcanonical curves embedded in some 
higher dimensional projective space. 
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1. Introduction 

At the beginning, several researchers developed the theory of 
the Weierstrass points for smooth curves, and for their canon- 
ical divisors. During the last three decades, Lax and Wid- 
land (see [1–6] ) founded and developed the theory for Goren- 
stein curves, where the invertible dualizing sheaf replaces the 
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canonical sheaf. Through this context, the singular points of a 
Gorenstein curve have to be considered as Weierstrass points. 

The goal of this paper is to develop a technique for com- 
puting the distribution of the Weierstrass points on the mem- 
bers of any 1-parameter family C a , a ∈ C , of Gorenstein 

quintic curves with respect to the dualizing sheaf K C a . Such a 
technique is based on the computation of the sequence of in- 
tegers which in [7] has been called “K C a -Weierstrass Gaps Se- 
quence” ( K C a -WGS for brief), even at singular points. In [9] , 
the first author and F. Sakai classified and investigated the dis- 
tribution of Weierstrass points on certain 1-parameter family of 
genus 3 curves, named after Kuribayashi quartic curves. 

Actually, the technique we describe, consists of performing 
a fixed sequence of computations, and so, it can be applied to 

any Gorenstein quintic curve, at any point P , no matter if it 
is smooth or singular. In case, P is smooth, the K C a -WGS are 
computed by determining the dimension of the linear systems 
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K C a − nP, for every non-negative integer n , and so some con- 
tact order must be computed. If P is singular, the K C a -WGS 

are given by a suitable combination of the ˜ K ˜ C a -WGS at the 
points Q 1 , . . . , Q m 

, m ≥ 1, over P in a partial normalization 

θP : ˜ C a −→ C a of C a at P , where ˜ K ˜ C a is the pull back of K C a . The 
˜ K ˜ C a -WGS at these points can be computed as the contact order 

of C ω , ω ∈ K C a , and the branches C 

(1) 
a , . . . , C 

(m ) 
a of C a through 

P , corresponding to Q 1 , . . . , Q m 

, respectively, one branch at a 
time. Moreover, the study of the branches through P allows to 

largely simplify the computation of the K C a -WGS. This simpli- 
fication is essentially due to the knowledge of the normalization 

map in terms of blow-up’s, as shown in [7] . 
In both cases, the contact orders are computed by means of 

the osculating conics. Moreover, in the next section, we describe 
a quick way to compute the osculating conics at a point of a 
Gorenstein quintic curve, because in the most spread computer 
algebra systems there is no built in function to perform that 
computation. However, as a computing support, to perform the 
computations described through this paper we use MATHE- 
MATICA and MAPLE programs. 

The layout of the paper is as follows. In Section 2 , we cover 
most of the necessary background material. Section 3 is devoted 

to describe the technique and show its correctness, while, in the 
last Section 4 , we let the technique work on some interesting 
examples. 

2. Notation and preliminaries 

We begin by stating the basic tools that will be used throughout 
this paper. 

2.1. Weierstrass points 

Here, we briefly recall what we need about Weierstrass points 
on curves. We start by the definition of the K C -Weierstrass gap 

sequences (shortly K C -WGS in the following) at a point, singu- 
lar or not, with respect to the dualizing sheaf K C over C . To 

this purpose, let C be any projective integral curve of arith metic 
genus g over the complex field C . Let us recall a geometri- 
cal definition of a K C -gap at a point P of C (see [8] , § 2). If 
the point P is non-singular, the K C -WGS at P is defined as 
follows: 

Definition 1. Let P be a smooth point on the curve C . The 
integer n is a K C -gap if and only if, dim C (K C − (n − 1) P) > 

dim C (K C − nP) . The sequence of the K C -gaps is the K C -WGS 

at P . 

On the other hand, if P ∈ C is a singular point, let π : ˜ C −→ 

C is the normalization of C and consider the linear system 

˜ V = 

span (π∗v 1 , . . . , π∗v g ) over ˜ C , where (v 1 , . . . , v g ) is a basis of 
H 

0 (C, K C ) . 
A positive integer b ( Q ) is called a ˜ V -gap at a point Q ∈ 

π−1 (P) if and only if, dim C ( ̃  V − (b(Q ) − 1) Q ) > dim C ( ̃  V −
b(Q ) Q ) . Since dim C ( ̃  V ) = g and by Riemann –Roch Theorem 

dim C ( ̃  V − (2 g − 1) Q ) = 0 , it follows that at each Q ∈ π−1 (P) 

there are exactly g ˜ V -gap. If ˜ V -WGS is known for each point Q 

lying over P , the K C -WGS { a 1 (P) , . . . , a g ( P) } at P can be com- 
puted as follows: 

Proposition 1. Suppose π : ˜ C −→ C is the normalization of C. 
Let Q 1 , . . . , Q m 

be the points of ˜ C corresponding to the branches 

centered at a point P of C and { b ̃ V 
1 (Q i ) , . . . , b ̃

 V 
g (Q i ) } be the ˜ V - 

WGS at the point Q i , for i = 1 , 2 , . . . , m, then one has: 

a k (P) = 

m ∑ 

i=1 

b ̃ V 
k (Q i ) − k (m − 1) , 1 ≤ k ≤ g. (1) 

Proof. See ( [7] , Proposition 5.5, p . 285). �

Following [7] , Proposition 5.4, one can define the so called 

k th K C -extraweight at the point P , denoted by E k ( P ) as: 

E k (P) = 

∑ 

Q ∈ π−1 (P) 

w ̃

 V 
k (Q ) , 

where w ̃

 V 
k (Q ) = 

∑ k 
i=1 (b ̃

 V 
k (Q ) − i) is the k th 

˜ V -Weierstrass 
weight at the smooth point Q . Therefore, at the point P , one 
can attach a sequence of integers { E 1 (P) , . . . , E g ( P) } , called the 
K C -extraweight sequence at P . By means of the extraweight se- 
quence, the K C -WGS { a 1 (P) , . . . , a g ( P) } at P can be computed 

as 

a k (P) = 

{ 

E k (P) + 1 if k = 1 , 

E k (P) − E k −1 (P) + k if 2 ≤ k ≤ g. 
(2) 

Hence, we also have (see [7] ) 

E k (P) = 

k ∑ 

i=1 

(a i (P) − i) . (3) 

The last two formulas show that it is equivalent to know the 
K C -WGS or the extraweight sequence at P . It is clear that the 
first way is easier to compute than the second, because of the 
geometrical meaning of the K C -WGS. 

Using a Widland –Lax argument (see [1] and [6] ) or (see [7] , 
Proposition 4.5) one can show that for each k 

w k (P) = k (k − 1) δP + E k (P) , 1 ≤ k ≤ g (4) 

where w k (P) is a non-negative integer, called k th K C -weight at 
the point P and δP = dim C ( ˜ O P (C) / O P (C)) is a numerical in- 
variant linked to the kind of singularity. The sequence of inte- 
gers { w 1 (P) , . . . , w g ( P) } is called the K C -weight sequence at P . 
The g th K C -weight w g (P) is nothing but the vanishing order at 
the point P of the Wronskian of a basis for H 

0 (C, K C ) as defined 

in [6] . Hence, the point P is a K C -Weierstrass point if and only if 
w g (P) > 0 . Moreover, the total number of the K C -Weierstrass 
points up to their weights is given by the following proposition 

( see [6] , Proposition 1 or [7] , Proposition 4.4). 

Proposition 2. The total gth K C -weight of the K C -Weierstrass 
point is: 

W C,g = 

∑ 

P∈ C 
w g (P) = (g − 1) g(g + 1) (5) 

Remark 1. As a consequence to Proposition 1 , if π−1 (P) = { Q } , 
i.e. the preimage of P reduces to just one point on C , then the 
K C -WGS at P coincides with the ˜ V -WGS at Q . The K C -WGS 

and the ˜ V -WGS coincide also when the point P is smooth. 
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