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In this paper we study the existence of solutions of two Cauchy problems of two nonlinear
differential equations with nonlocal condition. The continuous dependence of the solutions on the
coeflicients of the nonlocal condition will be studied.
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1. Introduction

Problems with nonlocal conditions have been extensively stud-
ied by several authors in the last two decades. The reader is re-
ferred to [1-5] and [6-13] and references therein.

Consider the two nonlinear differential equations

dx(t) dx(1)
T f(t, x(1), 7) te(0,T], 1)

and
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d’;(tt) = g(z, x(1), d);(ll)>, a.et € (0, T, @

with the nonlocal condition

Yoax(m) =x, we 7). 3)

k=1

Our aim here is to study the existence of solutions for the two
problems (1) with the nonlocal condition (3) and (2) with the
nonlocal condition (3). Moreover, the continuous dependence
of the solutions of the above two problems on x, and the non-
local coefficients a; will be studied.

2. Functional integral equations

Lemma 2.1. Let Y ;" | a; # 0. The solution of the nonlocal prob-
lem (1) and (3) can be expressed by the integral equation
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x(t) = A(xo - Zakfrky(s)ds) +/ y(s)ds,
0 0

A= (Z ak> N (4)
where y is the solution of the functional integral equation
m % t
) = f(r, A=Y a [ ywds+ [ s y(t)),
k=t 70 0

e[o, 7. ()

Proof. Let d’:}(t’) = y(¢) in Eq. (1), then we obtain

y(@) = f(t,x(0), y(1))

where
x(t) = x(0) —l—/ y(s)ds. (6)
0

Letting t = 7;in (6), we obtain

m

Z aex(t) = Y axx(0) + Z a / y(s)ds. @)

k=1

Then
x(0) = (xo Zak/ (s)ds) ®)
where 4 = (O, ar) ™"

And we obtain

x(t) = A<x0 - Zak /rk y(s)ds) +/ y(s)ds,
k=1 V0 0

where y is the solution of the functional integral equation

y(t) = f(t Axy — AZak/ (9)d9+/ (s)ds,y(t)),
te[0,T].
By similar way, the following lemma can be proved. O

Lemma 2.2. Let Y ;" ax # 0. The solution of the nonlocal prob-
lem (2) and (3) can be expressed by the integral equation

x(t) = A(xo - Zak-/rky(s)ds) +/ y(s)ds,
0 0

A= (Z ak) N (9)

where y is the solution of the functional integral equation

m i t
) = g<t, Axo— A Zak/ y(s)ds +/ y(S)ds,y(t)>,
J=1 0 0

1[0, T]. (10)

2.1. Existence of solutions

Consider the functional integral equations (5) and (10) with the
following assumptions:

(1) f:[0, T]1 x R x R— Ris continuous and satisfies Lipschitz
condition

[f(t ur, un) — f (v, v)| < My(lug — vil + [z — ),

(ii) g:[0, 7] x R x R — R is measurable in 7 € [0, 7] for any
(u1, u2) € R x R and satisfies Lipschitz condition

lg(t, uy, up) — g(t, vi, v2)| < My(luy — vi| + |uz — v2l),
and
t
/ lg(7,0,0)|dt < N
0

(iii) M*
(iv) M*

=M QT +1) <1
= M>QT + 1) < 1.

Now we have the following theorem

Theorem 2.1. Let the assumptions (i) and (iii) be satisfied. Then
the functional integral equation (5) has a unique solution y €

Clo, 7.
Proof. Define the operator H by

m T t
Hy() = f<t, Axo— A4 Zak/ y(s)ds + / y(s) ds. y(l)>,
k=1 Y0 0
telo, T). (11)
Let y € ([0, T], then

[Hy(12) — Hy(11)]

m \
= ’f(tz,Axo—AZak/O y(S)ds—l—/ y(s)ds, y(lz))
—f(tQ,Axo AZak/ (s)dc+/ y(s) ds, y(t1)>'
(zz Axo — AZakf y(s)ds—f—/ y(s)ds, y(t1)>
Aiak [ yods+ / ¥(5) ds, y(h))'
+’f(r Axp — AZaA / y(s)ds+ / "y ds, y(ll))

m fn
f(tl,Axo AZak/ y(s)a's—{—/ y(s)ds, y(11)>'

<M, /'|y(s)|ds+M1|y<t2)—y(t1)|
n
m Tk 1
+’f stAXO_AZak/ y(s) ds+/ y(s)ds, y(t)
_ 0 0
m I
_f<t1,Ax0 AZak/ y(s)a's—{—/ y(s) ds, y(t.))‘

f(zaAYo
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