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Abstract Nonlinear systems of partial differential problems of first order with Dirichlet boundary 
conditions is considered. ultraspherical integral zero- boundary (UIZB) method is combined with 
Rayleigh–Ritz method to approximate the unknowns. The approach converts the problem to be a 
multi-objective constrained optimization problem which is easier to solve. Accurate results can be 
obtained by selecting a limited number of collocation points. Numerical examples are included to 
demonstrate the accuracy and efficiency of the propped method. 
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1. Introduction 

For last few decades, spectral methods using expansion in 

orthogonal polynomials such as Chebyshev or ultraspherical 
polynomials (see for instance [1,2] ) is well-known for its high 

accuracy. The pseudospectral method has been developed to 

obtain more accurate solutions in scientific computation. Doha 
et al. [3] constructed the Jacobi–Gauss–Lobatto pseudospectral 
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schemes for numerically solving a certain nonlinear Schrodinger 
equations. Doha et al. [4] investigated a Chebyshev–Gauss–
Radau collocation method in combination with the implicit 
Runge–Kutta scheme to obtain more accurate numerical so- 
lutions for hyperbolic systems of first order. Naher et al. [5] 
proposed extension of the generalized and improved (G 

′ /G)- 
expansion method for constructing class of exact traveling wave 
solutions of nonlinear evolution equations. Demiray et al. [6] 
combine the (G0/G; 1/G)-expansion method with Maple to 

obtain exact travelling wave solutions of the nonlinear wave 
equations. 

Rayleigh–Ritz method is used to convert differential equa- 
tions to a minimization problem for certain criteria. Many pa- 
pers discussed the use of this method to solve several problems, 
such as modeling the expansion of an elastic body [7] , approx- 
imating part of the spectrum of an elliptic operator [8] and 
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obtaining results for the time period and deflection of certain 

modes of vibration of rectangular plates [9] . 
According to the close relation of boundary value problems 

of partial differential equations to physical applications, the 
theory of boundary value problems is very rich. Several tech- 
nological processes and scientific applications yield boundary 
value problems for PDE’s. Howison and Oliver [10] analyzed 

a free boundary problem arising in a model for inviscid, in- 
compressible shallow water entry at small deadrise angles. El 
Dhaba et al. [11] used a boundary integral method to solve 
a problem of uncoupled magnetothermoelasticity for an infi- 
nite, elliptical cylindrical conductor carrying a steady axial and 

uniform electric current. Khanday [12] treated the temperature 
distribution in multi-layered human skin and subcutaneous tis- 
sues and suggested a model of the solution of parabolic heat 
equation. 

Chen [13] studied a free boundary value problem of the Euler 
system arising in the inviscid steady supersonic flow past a sym- 
metric curved cone. Tsai [14] combined the homotopy analysis 
method with the method of fundamental solutions and the aug- 
mented polyharmonic spline to solve certain nonlinear partial 
differential equations. Feng et al. [15] developed a new frame- 
work for designing and analyzing convergent finite difference 
methods for approximating both classical and viscosity solu- 
tions of second order fully nonlinear partial differential equa- 
tions (PDEs) in 1-D. Hosseini et al. [16] applied the operational 
Tau method with arbitrary polynomial bases to approximate 
the solution of a class of nonlinear transient heat conduction 

equations with some supplementary conditions. 
Khalil et al. [17] developed an operational matrix with 

shifted Legendre polynomials to approximate solution of frac- 
tional differential equations(FDEs) and coupled system of 
FDEs with variable coefficients. The proposed method converts 
the problem into a system of easily solvable algebraic equations. 
The authors discussed also the convergence of the scheme and 

solved some test problems to show the efficiency and applicabil- 
ity of the method. Khalil et al. [18] extended the idea of pseudo 

spectral method to approximate solution of time fractional or- 
der three-dimensional heat conduction equations on a cubic 
domain. They studied shifted Jacobi polynomials and provide 
a simple scheme to approximate function of multi variables in 

terms of these polynomials. They developed operational matri- 
ces for arbitrary order integrations as well as for arbitrary order 
derivatives. 

In the present paper, we numerically solve partial differen- 
tial systems of first order. In fact, we treat with this problem 

as follows: We use ultraspherical integral method zero- bound- 
ary (UIZB) method to approximate the unknowns. We apply 
Rayleigh–Ritz method to reformulate the problem to be multi- 
objective constrained optimization problem. The resulting con- 
strained optimization problem is then solved by sequential min- 
imization processes of the Penalty leap frog method. 

The outline of this paper is arranged as follows. In the 
next section, some properties of ultraspherical polynomials 
and ultraspherical integral matrix is investigated. In Section 3 
Model of the problem is introduced. In Section 4 , the proposed 

method, namely, the ultraspherical integral zero- boundary- 
Rayleigh–Ritz (UIZB-RR) method is constructed for solving 
the proposed problem. Error estimates and convergence index 
is investigated in Section 5 . Some numerical examples are pro- 
posed in Section 6 to show the accuracy of our method. Finally, 
in Section 7 , some observations and conclusions are presented. 

2. Ultraspherical integral method 

The ultraspherical polynomials { G k ( λ, x ) } ∞ 

k =0 , where λ > −0 . 5 
is a parameter, are defined by: 

G k +1 ( λ, x ) = 

2( k + λ) 

k + 2 λ
x G k ( λ, x ) 

− k 

k + 2 λ
G k −1 ( λ, x ) , k = 1 , 2 , . . . , (2.1) 

G k ( λ, x ) = 

d 
dx 

[
1 

2( k + 1 ) 
G k +1 ( λ, x ) 

− k 

2( k + 2 λ)( k + 2 λ − 1 ) 
G k −1 ( λ, x ) 

]
. (2.2) 

Eq. (2.1) defines the ultraspherical polynomials starting with 

G 1 ( λ, x ) = x, G 0 ( λ, x ) = 1 , whereas Eq. (2.2) can be used to 

define the integration of the ultraspherical polynomials(by sim- 
ple integration) see El-Hawary et al. [19] . 

We define the collocation points to be the ultraspherical ze- 
ros points combined with the two boundary points of the inter- 
val, that is: 

� = { x j | G N ( λ, x j ) = 0 , k j = 1 , 2 , . . . , N − 1 , x 0 = −1 , x N = 1 }. 
(2.3) 

With this definition, we have ∫ x i 

−1 
f (x ) dx = 

∑ N 

k j =0 
S 

[ λ] 
i j f 

(
x j 

)
, (2.4) 

where the element of the ultraspherical integral matrix of first 
degree S, are defined by [17] : 

S 

[ λ] 
i j = 

N ∑ 

k =0 

� j G k ( λ, x j ) 

αk 

∫ x i 

−1 
G k (x ) dx, i, j, = 0 , 1 , . . . N, 

(2.5) 

and G k (x ) is the ultraspherical polynomial of degree k , where 
� j and αk obtained by 

� j = 

1 ∑ N 
k =0 

� j ( G k ( x j ) ) 
2 

λk 

, 

αk = 

j!�( λ + . 5 ) �( k + λ + . 5 ) �( K + λ) �( 2 λ) 

2 1 −2 k −2 λ−τ�( 2 k + 2 λ + 1 ) �( k + 2 λ) �( λ) 
, (2.6) 

with 

τ = 

{
1 , i f λ = k = 0 
0 , otherwise. 

(2.7) 

3. Model of the problem 

We consider the general form of system of nonlinear boundary 
value problem of first order PDE. It can be defined by the fol- 
lowing equations: 

L k 

(
u, 

∂u 
∂x 

, 
∂u 
∂y 

, ν, 
∂ν

∂x 

, 
∂ν

∂y 

)
= χk ( x, y ) , 

k = 1 , 2 and ( x, y ) ∈ � = [ −1 , 1 ] × [ −1 , 1 ] , (3.1) 

with Dirichlet boundary condition 
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