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Abstract In this paper, we investigate the global attractivity of the difference equation 

x n +1 = 

A − Bx n −2 

C + Dx n −1 
, n = 0 , 1 , . . . , 

where A , B are nonnegative real numbers, C , D are positive real numbers and C + Dx n −1 � = 0 for all 
n ≥ 0. 
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1. Introduction 

Difference equations appear naturally as discrete analogues and 

numerical solutions of differential equations and delay differen- 
tial equations having applications in biology, ecology, physics, 
etc. The qualitative study of difference equations is a fertile 
research area and increasingly attracts many mathematicians. 
This topic draws its importance from the fact that many real life 
phenomena are modeled using difference equations. The study 

∗ Corresponding author. Tel.: +20 1067179166. 
E-mail addresses: ahmedelkb@yahoo.com (A.M. Ahmed), 
neveena@ymail.com (N.A. Eshtewy). 
Peer review under responsibility of Egyptian Mathematical Society. 

Production and hosting by Elsevier 

of nonlinear rational difference equations of higher order is of 
paramount importance, since we still know so little about such 

equations. 
R. Abo-Zeid [1] investigated the attractivity of two nonlinear 

third order difference equations 

x n +1 = 

A − Bx n −1 

±C + Dx n −2 
, n = 0 , 1 , . . . , 

where A , B are nonnegative real numbers, C , D are positive real 
numbers and C + Dx n −2 � = 0 for all n ≥ 0. 

El-Owaidy et al. [2] investigated the global attractivity of the 
difference equation 

x n +1 = 

α − βx n −1 

γ + x n 
, n = 0 , 1 , . . . , 

where α, β, γ are non-negative real numbers and γ + x n � = 0 for 
all n ≥ 0. 
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M. A. El-Moneam [3] studied the global behavior of the 
higher order nonlinear rational difference equation 

x n +1 = Ax n + Bx n −k + Cx n −l + Dx n −σ + 

bx n −k 

| dx n −k − ex n −l | , 
n = 0 , 1 , . . . , 

where the coefficients A , B , C , D , b , d , e ∈ (0, ∞ ), 
while k , l and σ are positive integers. The initial conditions 
x −σ , . . . , x −l , . . . , x −k , . . . , x −1 , x 0 are arbitrary positive real 
numbers such that k < l < σ . 

A. E. Hamza et al. [4] investigated the global asymptotic sta- 
bility of the recursive sequence 

x n +1 = 

α − βx n 

γ + x n −1 
, n = 0 , 1 , . . . , 

where α, β, γ ≥ 0. For other related results, see [5,6] . In this 
paper we study the global attractivity of the difference equations 

x n +1 = 

A − Bx n −2 

C + Dx n −1 
, n = 0 , 1 , . . . , (1.1) 

where A , B are non negative real numbers, C , D are positive real 
numbers and C + Dx n −1 � = 0 for all n ≥ 0. 

Theorem 1.1 ( [6] ) . Consider the third-degree polynomial equation 

λ3 + a 2 λ2 + a 1 λ + a 0 = 0 , (1.2) 

where a 1 , a 0 and a 2 are real numbers. Then a necessary and suffi- 
cient condition for all roots of Eq. (1.2) to lie inside the open disk 

| λ| < 1 is 

| a 2 + a 0 | < 1 + a 1 , | a 2 − 3 a 0 | < 3 − a 1 and a 2 0 + a 1 − a 0 a 2 < 1 . 

The change of variables x n = 

C 
D 

y n reduces Eq. (1.1) to the 
difference equation 

y n +1 = 

p − qy n −2 

1 + y n −1 
, n = 0 , 1 , . . . . (1.3) 

where p = 

AD 

C 2 and q = 

B 
C . 

2. The recursive sequence y n +1 = (p − qy n −2 ) / (1 + y n −1 ) 

In this section we study the global attractivity of the difference 
equation 

y n +1 = 

p − qy n −2 

1 + y n −1 
, n = 0 , 1 , . . . , (2.1) 

where p and q are positive real numbers. 
The equilibrium points of Eq. (2.1) are the zeros of the func- 

tion 

f ( y ) = y 2 + (1 + q ) y − p. 

That is 

y 1 = 

1 
2 
(−(1 + q ) + 

√ 

(1 + q ) 2 + 4 p ) 

and 

y 2 = 

1 
2 
(−(1 + q ) −

√ 

(1 + q ) 2 + 4 p ) . 

The linearized equation associated with Eq. (2.1) about y i is 

z n +1 + 

y i 
1 + y i 

z n −1 + 

q 
1 + y i 

z n −2 = 0 , n = 0 , 1 , 2 , . . . . 

Its associated characteristic equation is 

λ3 + 

y i 
1 + y i 

λ + 

q 
1 + y i 

= 0 . 

Suppose that 

g i (λ) = λ3 + 

y i 
1 + y i 

λ + 

q 
1 + y i 

, i = 1 , 2 . (2.2) 

Theorem 2.1. 

(1) The sufficient condition for the equilibrium point y 1 to be lo- 
cally asymptotically stable is q ≤ 1. 

(2) If q > 

1 
3 + 

√ 

4 
3 p + 

4 
9 , then y 1 is unstable. 

(3) y 2 is saddle equilibrium point. 

Proof. 

(1) If q ≤ 1, then by using Theorem 1.1 with a 0 = 

q 
1+ y i , a 1 = 

y i 
1+ y i , a 2 = 0 . We can easily show that y 1 is locally asymptot- 
ically stable. 

(2) If q > 

1 
3 + 

√ 

4 
3 p + 

4 
9 , then g 1 ( λ) has a zero λ1 in (−∞ , −1) , 

which implies that the equilibrium point y 1 is unstable. 
(3) It is clear that g 2 ( λ) has a zero λ1 ∈ (0, 1), and g 2 (− q 

1+ y 2 ) = 

q 
(1+ y 2 ) 3 

[ y 2 + 1 − q 2 ] . 

It is clear that g 2 ( λ) is an increasing function. Since 
g 2 (− q 

1+ y 2 ) > 0 , then λ1 < − q 
1+ y 2 �⇒ | λ2 λ3 | > 1 �⇒ | λ2 | = 

| λ3 | > 1 , which implies that y 2 is unstable equilibrium point 
(saddle). �

Lemma 1. Assume that q ≤ 1. Then the interval [0 , p 
q ] is an in- 

variant interval for Eq. (2.1) . 

Proof. Let { y n } ∞ 

n = −2 be a solution of Eq. (2.1) with y −2 , y −1 , y 0 ∈ 

[0 , p 
q ] . 

Consider the function U 1 (x, y ) = 

p−qy 
1+ x , U 1 is decreasing in x 

and y on (−1 , ∞ ) × (−∞ , 
p 
q ) . 

Hence 
0 = U 1 ( 

p 
q , 

p 
q ) ≤ y 1 = U 1 (y −1 , y −2 ) < U 1 (0 , 0) = p < 

p 
q , 

by induction we obtain 0 ≤ y n ≤ p 
q ∀ n ≥ 1. 

Assume that there exists k ≥ 2 such that the following con- 
ditions hold 

p ≥ kq 2 and 1 ≥ kp 
q . �

Lemma 2. Assume that condition (2.3) hold for some k ≥ 2. Let 
{ y n } be a solution of Eq. (2.1) 

If y n , y n +1 , y n +2 ∈ [ −(k − 1) 
p 
q , 

p 
q ] for some n ≥ −2 , then 

y n + i ∈ [0 , p 
q ] ∀ i ≥ 3. 
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