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Abstract The aim of this paper is to establish and prove several results on common fixed point 
for a pair of mappings satisfying more general contraction conditions portrayed by rational expres- 
sions having point-dependent control functions as coefficients in complex valued metric spaces. Our 
results generalize and extend the results of Azam et al. (2011) [1], Sintunavarat and Kumam (2012) 
[2], Rouzkard and Imdad (2012) [3], Sitthikul and Saejung (2012) [4] and Dass and Gupta (1975) 
[5]. To substantiate the authenticity of our results and to distinguish them from existing ones, some 
illustrative examples are also furnished. 
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1. Introduction 

In 2011, Azam et al. [1] introduced the notion of complex val- 
ued metric spaces and established some fixed point results for a 
pair of mappings for contraction condition satisfying a rational 
expression. This idea is intended to define rational expressions 
which are not meaningful in cone metric spaces and thus many 
such results of analysis cannot be generalized to cone metric 
spaces but to complex valued metric spaces. 

Complex valued metric space is useful in many branches 
of Mathematics, including algebraic geometry, number theory, 
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applied Mathematics as well as in physics including hydrody- 
namics, mechanical engineering, thermodynamics and electri- 
cal engineering. After the establishment of complex valued met- 
ric spaces, Rouzkard et al. [3] established some common fixed 

point theorems satisfying certain rational expressions in these 
spaces to generalize the result of [1] . Subsequently Sintunavarat 
et al. [2,6] obtained common fixed point results by replac- 
ing the constant of contractive condition to control functions. 
Recently, Sitthikul et al. [4] established some fixed point results 
by generalizing the contractive conditions in the context of com- 
plex valued metric spaces. Many researchers have contributed 

with different concepts in this space. One can see in [7–13] . 
In what follows, we recall some notations and definitions due 

to Azam et al. [1] , that will be used in our subsequent discussion. 
Let C be the set of complex numbers and z 1 , z 2 ∈ C . Define 

a partial order � on C as follows: z 1 � z 2 if and only if Re ( z 1 ) ≤
Re ( z 2 ) and Im ( z 1 ) ≤ Im ( z 2 ). It follows that z 1 � z 2 if one of the 
followings conditions is satisfied: 

(C1) Re (z 1 ) = Re (z 2 ) and Im (z 1 ) = Im (z 2 ) , 
(C2) Re ( z 1 ) < Re ( z 2 ) and Im (z 1 ) = Im (z 2 ) , 
(C3) Re (z 1 ) = Re (z 2 ) and Im ( z 1 ) < Im ( z 2 ), 
(C4) Re ( z 1 ) < Re ( z 2 ) and Im ( z 1 ) < Im ( z 2 ). 

In particular, we will write z 1 � z 2 if z 1 � = z 2 and one of (C2), 
(C3) and (C4) is satisfied and we will write z 1 ≺ z 2 if only (C4) 
is satisfied. 

Definition 1.1 ( [1] ) . Let X be a non-empty set. A mapping d : 
X × X → C is called a complex valued metric on X if the fol- 
lowing conditions are satisfied: 

(CM1) 0 � d ( x , y ) for all x , y ∈ X and d (x, y ) = 0 ⇔ x = y ; 
(CM2) d (x, y ) = d (y, x ) for all x , y ∈ X ; 
(CM3) d (x, y ) � d (x, z ) + d (z, y ) for all x , y , z ∈ X . 

In this case, we say that ( X , d ) is a complex valued metric space. 

Example 1.1. Let X = C be a set of complex number. Define d : 
C × C → C . By 

d (z 1 , z 2 ) = | x 1 − x 2 | + i| y 1 − y 2 | , 

where z 1 = x 1 + iy 1 and z 2 = x 2 + iy 2 . Then ( C , d ) is a complex 
valued metric space. 

Example 1.2 (inspired by [2] ) . Let X = C . Define a mapping d : 
X × X → C by d (z 1 , z 2 ) = e ik | z 1 − z 2 | , where k ∈ [0 , π2 ] . Then 

( X , d ) is a complex valued metric space. 

Definition 1.2. [1] Suppose that ( X , d ) is a complex valued met- 
ric space. 

1. We say that a sequence { x n } is a Cauchy sequence if for every 
0 ≺ c ∈ C there exists an integer N such that d ( x n , x m 

) ≺ c 
for all n , m ≥ N . 

2. We say that { x n } converges to an element x ∈ X if for every 
0 ≺ c ∈ C there exists an integer N such that d ( x n , x ) ≺ c for 

all n ≥ N . In this case, we write 
d 

x n → x . 
3. We say that ( X , d ) is complete if every Cauchy sequence in X 

converge to a point in X . 

Lemma 1.1. [1] Let ( X , d ) be a complex valued metric space and 
let { x n } be a sequence in X. Then { x n } converges to x if and only 
if | d ( x n , x )| → 0 as n → ∞ . 

Lemma 1.2. [1] Let ( X , d ) be a complex valued metric space and 
let { x n } be a sequence in X. Then { x n } is a Cauchy sequence if 
and only if | d (x n , x n + m 

) | → 0 as n → ∞ . 

2. Main result 

We start to this section with the following observation. 

Proposition 2.1. Let ( X , d ) be a complex valued metric space and 
S , T : X → X. Let x 0 ∈ X and defined the sequence { x n } b;y 

x 2 n +1 = Sx 2 n , 

x 2 n +2 = Tx 2 n +1 , ∀ n = 0 , 1 , 2 , . . . (2.1) 

Assume that there exists a mapping λ: X × X × X → [0, 1) such 
that λ( TSx , y , a ) ≤ λ( x , y , a ) and λ( x , STy , a ) ≤ λ( x , y , a ), ∀ x , y 
∈ X and for a fixed element a ∈ X and n = 0 , 1 , 2 , . . . . Then 

λ(x 2 n , y, a ) ≤ λ(x 0 , y, a ) and λ(x, x 2 n +1 , a ) ≤ λ(x, x 1 , a ) . 

Proof. Let x , y ∈ X and n = 0 , 1 , 2 , . . . . Then we have 

λ(x 2 n , y, a ) = λ( TSx 2 n −2 , y, a ) ≤ λ(x 2 n −2 , y, a ) 

= λ( TSx 2 n −4 , y, a ) ≤ · · · ≤ λ(x 0 , y, a ) . 

Similarly, we have 

λ(x, x 2 n +1 , a ) = λ(x, STx 2 n −1 , a ) ≤ λ(x, x 2 n −1 , a ) 

= λ(x, STx 2 n −3 , a ) ≤ · · · ≤ λ(x, x 1 , a ) . �

The subsequent example illustrates the preceding proposition. 

Example 2.1. Let X = { 1 , 1 
2 , 

1 
3 , 

1 
4 , 

1 
5 , . . . } . Define d : X × X → 

C as d (x, y ) = i| x − y | then clearly ( X , d ) is a complex valued 

metric space also define self-mappings S and T by 

S 

( 1 
n + 1 

)
= 

1 
n + 2 

= T 

( 1 
n + 1 

)
, n = 0 , 1 , 2 , 3 , . . . . 

Choosing sequence { x n } as x n = 

1 
n +1 , n = 0 , 1 , 2 , 3 , . . . Then 

x 0 = 1 ∈ X . 

Clearly Sx 2 n = x 2 n +1 and Tx 2 n +1 = x 2 n +2 . 

Consider a mapping λ: X × X × X → [0, 1) by λ(x, y, a ) = 

x 
6 + 

y 
8 + a, for all x , y ∈ X and for fixed a = 

1 
2 ∈ X , then 

λ(x, y, a ) = 

x 
6 + 

y 
8 + 

1 
2 . 

Undoubtedly 

λ( TSx , y, a ) ≤ λ(x, y, a ) and λ(x, STy , a ) ≤ λ(x, y, a ) , 

for all x , y ∈ X and for fixed a ∈ X . 
Consider 

λ(x 2 n , y, a ) = 

1 
6(2 n + 1) 

+ 

y 
8 

+ 

1 
2 

≤ 1 
6 

+ 

y 
8 

+ 

1 
2 

= λ(x 0 , y, a ) , 

that is λ(x 2 n , y, a ) ≤ λ(x 0 , y, a ) , n = 0 , 1 , 2 . . . , ∀ y ∈ X and for 
a = 

1 
2 ∈ X . Also consider 
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