

Egyptian Mathematical Society

Journal of the Egyptian Mathematical Society

www.etms-eg.org www.elsevier.com/locate/joems

ORIGINAL ARTICLE

Necessity and sufficiency for hypergeometric functions to be in a subclass of analytic functions

M.K. Aouf^a, A.O. Mostafa^a, H.M. Zayed^{b,*}

^a Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt

^b Department of Mathematics, Faculty of Science, Menofia University, Shebin Elkom 32511, Egypt

Received 11 October 2014; revised 17 November 2014; accepted 3 January 2015 Available online 23 February 2015

KEYWORDS

Univalent; Starlike; Convex; Uniformly starlike; Uniformly convex; Hypergeometric function **Abstract** The purpose of this paper is to introduce necessary and sufficient condition of (Gaussian) hypergeometric functions to be in a subclass of uniformly starlike and uniformly convex functions. Operators related to hypergeometric functions are also considered. Some of our results correct previously known results.

2010 MATHEMATICS SUBJECT CLASSIFICATION: 30C45; 30A20; 34A40

© 2015 Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Let A denote the class of functions f(z) of the form:

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n,$$
 (1.1)

which are analytic in the open unit disc $\mathbb{U} = \{z : z \in \mathbb{C} \text{ and } | z | < 1\}$, and let S be the subclass of all functions in A, which are univalent. Let $g(z) \in A$, be given by

ELSEVIER Production and hosting by Elsevier

$$g(z) = z + \sum_{n=2}^{\infty} g_n z^n,$$
 (1.2)

then, the integral convolution of two power series f(z) and g(z) is given by (see [1]):

$$(f \circledast g)(z) = z + \sum_{n=2}^{\infty} \frac{a_n g_n}{n} z^n = (g \circledast f)(z).$$
(1.3)

Let $S^*(\alpha)$ and $\mathcal{K}(\alpha)$ denote the subclasses of starlike and convex functions of order α , respectively. We note that $S^*(0) = S^*$ and $\mathcal{K}(0) = \mathcal{K}$, the subclasses of starlike and convex functions (see, for example, Srivastava and Owa [2]).

Goodman [3,4] introduced the classes \mathcal{UCV} and \mathcal{UST} of uniformly convex and uniformly starlike functions. Following Goodman, Rønning [5] (see also [6]) gave one variable analytic characterization for \mathcal{UCV} , that is, a function f(z) of the form (1.1) is in the class \mathcal{UCV} if and only if

$$\Re\left\{1+\frac{zf''(z)}{f'(z)}\right\} > \left|\frac{zf''(z)}{f'(z)}\right| (z \in \mathbb{U}).$$

$$(1.4)$$

http://dx.doi.org/10.1016/j.joems.2015.01.002

^{*} Corresponding author.

E-mail addresses: mkaouf127@yahoo.com (M.K. Aouf), adelaeg254@ yahoo.com (A.O. Mostafa), hanaa_zayed42@yahoo.com (H.M. Zayed). Peer review under responsibility of Egyptian Mathematical Society.

¹¹¹⁰⁻²⁵⁶X © 2015 Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Goodman proved the classical Alexander's result $f(z) \in \mathcal{UCV} \iff zf'(z) \in \mathcal{UST}$, does not hold. On later, Rønning [7] introduced the class S_p which consists of functions such that $f(z) \in \mathcal{UCV} \iff zf'(z) \in S_p$. Also in [5], Rønning generalized the classes \mathcal{UCV} and S_p by introducing a parameter α in the following.

Definition 1 [5]. A function f(z) of the form (1.1) is in the class $S_p(\alpha)$, if it satisfies the following condition:

$$\Re\left\{\frac{zf'(z)}{f(z)} - \alpha\right\} > \left|\frac{zf'(z)}{f(z)} - 1\right| (-1 \leqslant \alpha < 1; \ z \in \mathbb{U}), \tag{1.5}$$

and $f(z) \in \mathcal{UCV}(\alpha)$, the class of uniformly convex functions of order α if and only if $zf'(z) \in S_p(\alpha)$.

Also in [8], Bharati et al. introduced the classes $UCV(\alpha, \beta)$ and $S_p(\alpha, \beta)$ as follows:

Definition 2 [8]. A function f(z) of the form (1.1) is said to be in the class $S_p(\alpha, \beta)$, if it satisfies the following condition:

$$\Re\left\{\frac{zf'(z)}{f(z)} - \alpha\right\} > \beta \left|\frac{zf'(z)}{f(z)} - 1\right| \ (-1 \leqslant \alpha < 1; \beta \ge 0; z \in \mathbb{U}),$$
(1.6)

and $f(z) \in \mathcal{UCV}(\alpha, \beta)$ if and only if $zf'(z) \in S_p(\alpha, \beta)$.

Denote by \mathcal{T} , the subclass of \mathcal{S} consisting of functions of the form:

$$f(z) = z - \sum_{n=2}^{\infty} a_n z^n \ (a_n \ge 0).$$
(1.7)

Denote also by $\mathcal{T}^*(\alpha) = \mathcal{S}^*(\alpha) \cap \mathcal{T}$, $\mathcal{C}(\alpha) = \mathcal{K}(\alpha) \cap \mathcal{T}$, the subclasses of starlike and convex functions of order α with negative coefficients, which were introduced and studied by Silverman (see [9]). Also let $\mathcal{UCT}(\alpha) = \mathcal{UCV}(\alpha) \cap T$, $\mathcal{S}_p \mathcal{T}(\alpha) = \mathcal{S}_p(\alpha) \cap \mathcal{T}$, $\mathcal{UCT}(\alpha, \beta) = \mathcal{UCV}(\alpha, \beta) \cap T$ and $\mathcal{S}_p \mathcal{T}(\alpha, \beta) = \mathcal{S}_p(\alpha, \beta) \cap \mathcal{T}$.

Let $S_{\gamma}(f; \alpha, \beta)$ $(-1 \leq \alpha < 1, \beta \geq 0 \text{ and } 0 \leq \gamma \leq 1)$ be the subclass of *S* consisting of functions of the form (1.1) and satisfying the analytic criterion:

$$\Re\left\{\frac{zf'(z) + \gamma z^2 f''(z)}{(1-\gamma)f(z) + \gamma z f'(z)} - \alpha\right\}$$
$$> \beta \left|\frac{zf'(z) + \gamma z^2 f''(z)}{(1-\gamma)f(z) + \gamma z f'(z)} - 1\right| (z \in \mathbb{U}).$$
(1.8)

The class $S_{\gamma}(f; \alpha, \beta)$ was introduced and studied by Aouf et al. [10, with $g(z) = \frac{z}{1-z}$]. Further, we define the class $TS_{\gamma}(f; \alpha, \beta)$ by $TS_{\gamma}(f; \alpha, \beta) = S_{\gamma}(f; \alpha, \beta) \cap T$.

Let F(a, b; c; z) be the (Gaussian) hypergeometric function defined by

$$F(a, b; c; z) = \sum_{n=0}^{\infty} \frac{(a)_n (b)_n}{(c)_n (1)_n} z^n,$$

where $c \neq 0, -1, -2, \dots$ and
 $(\lambda)_n = \begin{cases} 1 & \text{if } n = 0, \\ \lambda (\lambda + 1) (\lambda + 2) \cdots (\lambda + n - 1) & \text{if } n \in \mathbb{N} = \{1, 2, \dots\}. \end{cases}$

We note that F(a,b; c; 1) converges for $\Re(c-a-b) > 0$ and is related to Gamma functions by

$$F(a,b; c; 1) = \frac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)}.$$
(1.9)

Also, we define the functions

g(a,b; c; z) = zF(a,b; c; z), (1.10) and

$$h_{\mu}(a,b;\ c;\ z) = (1-\mu)(g(a,b;c;z)) + \mu z(g(a,b;\ c;\ z))'(\mu \ge 0)$$
(1.11)

The mapping properties of a function $h_{\mu}(a, b; c; z)$ was studied by Shukla and Shukla [11].

Corresponding to the Gaussian hypergeometric function $_2F_1(a,b; c; z)$, we define the linear operator $\mathcal{M}_{a,b,c} : \mathcal{A} \to \mathcal{A}$ by the integral convolution

$$[\mathcal{M}_{a,b,c}(f)](z) = g(a,b; c; z) \circledast f(z)$$

= $z + \sum_{n=2}^{\infty} \frac{(a)_{n-1}(b)_{n-1}}{(c)_{n-1}(1)_{n-1}} \frac{a_n}{n} z^n \ (c \neq 0, -1, -2, ...), \ (1.12)$

and the linear operator $\mathcal{N}_{\mu}:\mathcal{A}\to\mathcal{A}$ by the integral convolution

$$\mathcal{N}_{\mu}(f)](z) = h_{\mu}(a,b;\ c;\ z) \circledast f(z)$$

= $z + \sum_{n=2}^{\infty} [1 + \mu(n-1)] \frac{(a)_{n-1}(b)_{n-1}}{(c)_{n-1}(1)_{n-1}} \frac{a_n}{n} z^n$
 $\times (c \neq 0, -1, -2, ...).$ (1.13)

Merkes and Scott [12] and Ruscheweyh and Singh [13] used continued fractions to find sufficient conditions for zF(a,b; c; z) to be in the class $S^*(\alpha)$ ($0 \le \alpha < 1$) for various choices of the parameters a, b and c. Carlson and Shaffer [14] showed how some convolution results about the class $S^*(\alpha)$ may be expressed in terms of a linear operator acting on hypergeometric functions. Recently, Silverman [15] gave a necessary and sufficient conditions for zF(a,b; c; z) to be in the classes $S^*(\alpha)$ and $\mathcal{K}(\alpha)$.

2. Main results

Unless otherwise mentioned, we assume throughout this paper that $-1 \le \alpha < 1$, $\beta \ge 0$ and $0 \le \gamma \le 1$. To establish our results, we need the following lemmas due to Aouf et al. [10].

Lemma 2.1 [10, Theorem 1, with $g(z) = \frac{z}{1-z}$]. A sufficient condition for f(z) defined by (1.1) to be in the class $S_{\gamma}(f; \alpha, \beta)$ is

$$\sum_{n=2}^{\infty} [n(1+\beta) - (\alpha+\beta)][1+\gamma(n-1)]|a_n| \le 1-\alpha.$$
 (2.1)

Lemma 2.2 [10, Theorem 2, with $g(z) = \frac{z}{1-z}$]. A necessary and sufficient condition for f(z) defined by (1.7) to be in the class $TS_{\gamma}(f; \alpha, \beta)$ is

$$\sum_{n=2}^{\infty} [n(1+\beta) - (\alpha+\beta)][1+\gamma(n-1)]a_n \leqslant 1 - \alpha.$$
(2.2)

By using Lemmas 2.1 and 2.2, we get the following results.

Download English Version:

https://daneshyari.com/en/article/483409

Download Persian Version:

https://daneshyari.com/article/483409

Daneshyari.com