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Abstract The purpose of this paper is to introduce necessary and sufficient condition of (Gaussian)

hypergeometric functions to be in a subclass of uniformly starlike and uniformly convex functions.

Operators related to hypergeometric functions are also considered. Some of our results correct

previously known results.
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1. Introduction

Let A denote the class of functions fðzÞ of the form:

fðzÞ ¼ zþ
X1
n¼2

anz
n; ð1:1Þ

which are analytic in the open unit disc
U ¼ fz : z 2 C and j z j< 1g; and let S be the subclass of all

functions in A, which are univalent. Let gðzÞ 2 A, be given
by

gðzÞ ¼ zþ
X1
n¼2

gnz
n; ð1:2Þ

then, the integral convolution of two power series fðzÞ and gðzÞ
is given by (see [1]):

ðf ~ gÞðzÞ ¼ zþ
X1
n¼2

angn
n

zn ¼ ðg ~ fÞðzÞ: ð1:3Þ

Let S�ðaÞ and KðaÞ denote the subclasses of starlike and

convex functions of order a, respectively. We note that
S�ð0Þ ¼ S� and Kð0Þ ¼ K, the subclasses of starlike and con-
vex functions (see, for example, Srivastava and Owa [2]).

Goodman [3,4] introduced the classes UCV and UST of uni-
formly convex and uniformly starlike functions. Following
Goodman, Rønning [5] (see also [6]) gave one variable analytic

characterization for UCV, that is, a function fðzÞ of the form
(1.1) is in the class UCV if and only if

R 1þ zf00ðzÞ
f0ðzÞ

� �
>

zf00ðzÞ
f0ðzÞ

����
���� z 2 Uð Þ: ð1:4Þ
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Goodman proved the classical Alexander’s result

fðzÞ 2 UCV () zf0ðzÞ 2 UST , does not hold. On later,
Rønning [7] introduced the class Sp which consists of functions

such that fðzÞ 2 UCV () zf0ðzÞ 2 Sp. Also in [5], Rønning gen-

eralized the classes UCV and Sp by introducing a parameter a in

the following.

Definition 1 [5]. A function fðzÞ of the form (1.1) is in the class
SpðaÞ, if it satisfies the following condition:

R
zf 0ðzÞ
fðzÞ � a

� �
>

zf 0ðzÞ
fðzÞ � 1

����
���� �1 6 a < 1; z 2 Uð Þ; ð1:5Þ

and fðzÞ 2 UCVðaÞ, the class of uniformly convex functions of

order a if and only if zf 0ðzÞ 2 SpðaÞ.

Also in [8], Bharati et al. introduced the classes UCVða; bÞ
and Spða; bÞ as follows:

Definition 2 [8]. A function fðzÞ of the form (1.1) is said to be

in the class Spða; bÞ, if it satisfies the following condition:

R
zf 0ðzÞ
fðzÞ � a

� �
> b

zf 0ðzÞ
fðzÞ � 1

����
���� �1 6 a < 1; b P 0; z 2 Uð Þ;

ð1:6Þ

and fðzÞ 2 UCVða; bÞ if and only if zf 0ðzÞ 2 Spða; bÞ.

Denote by T , the subclass of S consisting of functions of
the form:

fðzÞ ¼ z�
X1
n¼2

anz
n ðan P 0Þ: ð1:7Þ

Denote also by T �ðaÞ ¼ S�ðaÞ \ T ; CðaÞ ¼ KðaÞ \ T , the
subclasses of starlike and convex functions of order a with
negative coefficients, which were introduced and studied by

Silverman (see [9]). Also let UCT ðaÞ ¼ UCVðaÞ \ T; SpT
ðaÞ ¼ SpðaÞ \ T ; UCT ða; bÞ ¼ UCVða; bÞ \ T and SpT ða,
bÞ ¼ Spða; bÞ \ T .

Let Scðf; a; bÞ ð�1 6 a < 1; b P 0 and 0 6 c 6 1Þ be the

subclass of S consisting of functions of the form (1.1) and sat-

isfying the analytic criterion:

R
zf 0ðzÞ þ cz2f 00ðzÞ
ð1� cÞfðzÞ þ czf 0ðzÞ � a

� �

> b
zf 0ðzÞ þ cz2f 00ðzÞ
ð1� cÞfðzÞ þ czf 0ðzÞ � 1

����
���� ðz 2 UÞ: ð1:8Þ

The class Scð f; a; bÞ was introduced and studied by Aouf et al.

10;with gðzÞ ¼ z
1�z

� �
. Further, we define the class TScð f; a; bÞ by

TScð f; a; bÞ ¼ Scð f; a; bÞ \ T :

Let Fða; b; c; zÞ be the (Gaussian) hypergeometric function
defined by

Fða; b; c; zÞ ¼
X1
n¼0

ðaÞnðbÞn
ðcÞnð1Þn

zn;

where c – 0; �1; �2; . . . and

ðkÞn ¼
1 if n ¼ 0;

kðkþ 1Þðkþ 2Þ � � � ðkþ n� 1Þ if n 2 N ¼ f1; 2; . . .g:

�

We note that Fða; b; c; 1Þ converges for Rðc� a� bÞ > 0 and

is related to Gamma functions by

Fða; b; c; 1Þ ¼ CðcÞCðc� a� bÞ
Cðc� aÞCðc� bÞ : ð1:9Þ

Also, we define the functions

gða; b; c; zÞ ¼ zFða; b; c; zÞ; ð1:10Þ

and

hlða; b; c; zÞ ¼ ð1� lÞðgða; b; c; zÞÞ þ lz gða; b; c; zÞð Þ0ðl P 0Þ:
ð1:11Þ

The mapping properties of a function hlða; b; c; zÞ was stud-
ied by Shukla and Shukla [11].

Corresponding to the Gaussian hypergeometric function

2F1ða; b; c; zÞ; we define the linear operator Ma;b;c : A ! A
by the integral convolution

Ma;b;cðfÞ½ �ðzÞ¼ gða;b; c; zÞ~ fðzÞ

¼ zþ
X1
n¼2

ðaÞn�1ðbÞn�1
ðcÞn�1ð1Þn�1

an
n
zn ðc–0;�1;�2; . . .Þ; ð1:12Þ

and the linear operator N l : A ! A by the integral

convolution

N lðfÞ
� �

ðzÞ ¼ hlða; b; c; zÞ ~ fðzÞ

¼ zþ
X1
n¼2

1þ lðn� 1Þ½ � ðaÞn�1ðbÞn�1ðcÞn�1ð1Þn�1
an
n
zn

� ðc – 0;�1;�2; . . .Þ: ð1:13Þ

Merkes and Scott [12] and Ruscheweyh and Singh [13] used

continued fractions to find sufficient conditions for
zFða; b; c; zÞ to be in the class S�ðaÞ ð0 6 a < 1Þ for various
choices of the parameters a; b and c. Carlson and Shaffer

[14] showed how some convolution results about the class
S�ðaÞ may be expressed in terms of a linear operator acting
on hypergeometric functions. Recently, Silverman [15] gave a
necessary and sufficient conditions for zFða; b; c; zÞ to be in

the classes S�ðaÞ and KðaÞ.

2. Main results

Unless otherwise mentioned, we assume throughout this
paper that �1 6 a < 1; b P 0 and 0 6 c 6 1.
To establish our results, we need the following lemmas due to

Aouf et al. [10].

Lemma 2.1 [10, Theorem 1, with gðzÞ ¼ z
1�z]. A sufficient

condition for fðzÞ defined by (1.1) to be in the class Scðf; a; bÞ is
X1
n¼2

nð1þ bÞ � ðaþ bÞ½ �½1þ cðn� 1Þ� anj j 6 1� a: ð2:1Þ

Lemma 2.2 [10, Theorem 2, with gðzÞ ¼ z
1�z]. A necessary and

sufficient condition for fðzÞ defined by (1.7) to be in the class
TScðf; a; bÞ is

X1
n¼2

nð1þ bÞ � ðaþ bÞ½ �½1þ cðn� 1Þ�an 6 1� a: ð2:2Þ

By using Lemmas 2.1 and 2.2, we get the following results.
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