

Egyptian Mathematical Society

Journal of the Egyptian Mathematical Society

www.etms-eg.org www.elsevier.com/locate/joems

ORIGINAL ARTICLE

Properties of superposition operators acting between \mathcal{B}_{μ}^{*} and Q_{K}^{*}

Alaa Kamal

Port Said University, Faculty of Science, Department of Mathematics, Port Said 42521, Egypt

Received 3 June 2014; revised 16 October 2014; accepted 3 January 2015 Available online 25 March 2015

KEYWORDS

Superposition operators; \mathcal{B}^*_{μ} ; Lipschitz continuity; Compactness Abstract In this paper we introduce natural metrics in the hyperbolic Bloch and Q_k -type spaces with respect to which these spaces are complete. Moreover, Lipschitz continuous, bounded and compact superposition operators S_{ϕ} from the hyperbolic Bloch type space to the hyperbolic Q_k -type space are characterized by conditions depending only on the analytic symbol ϕ .

2010 MATHEMATICS SUBJECT CLASSIFICATION: 46E15; 47B33; 47B38; 54C35

© 2015 The Author. Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In 1979, Yamashita [1] introduced originally the concept of systematically hyperbolic function classes. Subsequently, this concept has studied for hyperbolic Hardy, BMOA and Dirichlet-classes (see, e.g., [1,3-7]). In the last decades, Smith [8] studied inner functions in the hyperbolic little Bloch-class. The hyperbolic counter parts of the Q_p -spaces were studied by Li [9] and Li et al. [10].

On the other hand, Cámera and Giménez [11,12] studied the Bergman space A^p , the space of all L^p functions (with respect to Lebesgue area measure) which is analytic in the unit disk. They showed that $S_{\phi}(A^p) \subset A^q$ if and only if ϕ is a

E-mail address: alaa_mohamed1@yahoo.com

Peer review under responsibility of Egyptian Mathematical Society.

polynomial of degree at most p/q where $S_{\phi} : L^{p}(\mathbb{D}) \to L^{q}(\mathbb{D})$ is the superposition operator. Later, Buckley and Vukotic [13,14] introduced superposition operators from Besov spaces into Bergman spaces and univalent interpolation in Besov spaces. Also, in [15], Alvarez et al. characterized superposition operators between the Bloch space and Bergman spaces. Recently, Wen Xu [16] studied superposition operators on Bloch-type spaces.

Let X and Y be two metric spaces of analytic functions on the unit disk $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$. Assume that ϕ denotes a complex-valued function in the plane \mathbb{C} . The superposition operator S_{ϕ} on X defined by

$$S_{\phi}(f) := \phi \circ f, \quad f \in X.$$

If $\phi \circ f \in Y$ for $f \in X$, we say that ϕ acts by superposition from *X*into *Y*. As in Wen Xu [16] if *X* contains linear functions, ϕ must be an analytic function.

Let $H(\mathbb{D})$ be the class of analytic functions on \mathbb{D} . Also, $B(\mathbb{D})$ denotes the class of all analytic functions on \mathbb{D} such that |f(z)| < 1 for all $z \in \mathbb{D}$. It is clear that $B(\mathbb{D}) \subset H(\mathbb{D})$.

http://dx.doi.org/10.1016/j.joems.2015.01.003

¹¹¹⁰⁻²⁵⁶X © 2015 The Author. Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Hyperbolic derivative for analytic functions on the unit disk $\mathbb{D}.$

 $f^*(z) = \frac{|f'(z)|}{1 - |f(z)|^2}$ (cf. [17]).

The spaces of analytic functions, have been actively appearing in different areas of mathematical sciences such as dynamical systems, theory of semigroups, probability, mathematical physics and quantum mechanics (see [18–20] and others). Now, we list the following definitions.

Definition 1.1 [2]. Let f be an analytic function in \mathbb{D} and $0 < \alpha < \infty$. The α -Bloch space \mathcal{B}^{α} is defined by

$$\mathcal{B}^{\alpha} = \left\{ f \in H(\mathbb{D}) : \left\| f \right\|_{\mathcal{B}^{\alpha}} = \sup_{z \in \mathbb{D}} (1 - |z|^2)^{\alpha} |f'(z)| < \infty \right\},$$

the little α -Bloch space \mathcal{B}_0^{α} is given as follows

$$\mathcal{B}_{0}^{\alpha} = \left\{ f \in H(\mathbb{D}) : \|f\|_{\mathcal{B}_{0}^{\alpha}} = \lim_{|z| \to 1^{-}} (1 - |z|^{2})^{\alpha} |f'(z)| = 0 \right\}.$$

The spaces \mathcal{B}^1 and \mathcal{B}_0^1 are called as the Bloch space, and little Bloch space and denoted by \mathcal{B} and \mathcal{B}_0 respectively (see [21]).

A positive continuous function μ on [0, 1) is called normal if there are three constants $0 \le \delta < 1$ and 0 < a < b such that.

i.
$$\frac{\mu(r)}{(1-r)^{\alpha}}$$
 is decreasing on $[\delta, 1)$ and $\lim_{r\to 1} \frac{\mu(r)}{(1-r)^{\alpha}} = 0$;
ii. $\frac{\mu(r)}{(1-r)^{\beta}}$ is increasing on $[\delta, 1)$ and $\lim_{r\to 1} \frac{\mu(r)}{(1-r)^{\beta}} = \infty$.

$$(1-r)$$
 $(1-r)$

Definition 1.2 [22]. A function $f \in H(\mathbb{D})$ such that

$$\|f\|_{\mu} := \sup_{z \in \mathbb{D}} \mu(|z|) f'(z) < \infty$$

is called a μ -Bloch function. The space of all μ -Bloch functions is denoted by \mathcal{B}_{μ} .

It is readily seen that \mathcal{B}_{μ} is a Banach space with the norm $\|f\|_{\mathcal{B}_{\mu}} := |f(0)| + \|f\|_{\mu}$. Also, when $\mu(z) = 1 - |z|^2$, the space \mathcal{B}_{μ} is just the Bloch space which is denoted by \mathcal{B} ; while when $\mu(z) = (1 - |z|^2)^{\alpha}$ with $\alpha > 0$, the space \mathcal{B}_{μ} becomes the α -Bloch space which is denoted by \mathcal{B}_{α} .

The hyperbolic μ -Bloch space is defined as follows:

Definition 1.3 [23]. The sets of $f \in B(\mathbb{D})$ for which

$$\mathcal{B}^*_{\mu} = \left\{ f : f \text{ analytic in } \mathbb{D} \text{ and } \sup_{z \in \mathbb{D}} \mu(|z|) f^*(z) < \infty \right\}.$$

The little hyperbolic Bloch space $\mathcal{B}_{\mu,0}^*$ is a subspace of \mathcal{B}_{μ}^* consisting of all $f \in \mathcal{B}_{\mu}^*$ such that

$$\lim_{|z| \to 1^{-}} \mu(|z|) f^{*}(z) = 0.$$

Following [23], the authors defined a natural metric on the hyperbolic μ -Bloch space \mathcal{B}_{μ}^{*} in the following way:

$$d(f,g;\mathcal{B}^*_{\mu}) \ := \ d_{\mathcal{B}^*_{\mu}}(f,g) + \|f - g\|_{\mathcal{B}_{\mu}} + |f(0) - g(0)|,$$
 where

$$d_{\mathcal{B}_{\mu}^{*}}(f,g) := \sup_{a \in \mathbb{D}} \left| \frac{f'(z)}{1 - |f(z)|^{2}} - \frac{g'(z)}{1 - |g(z)|^{2}} \right| \mu(|z|)$$

for $f, g \in \mathcal{B}_{\mu}^{*}$.

The following conditions have played crucial roles in the study of Q_K spaces:

$$\int_0^1 \phi_K(s) \frac{ds}{s} < \infty. \tag{1}$$

$$\int_{1}^{\infty} \phi_{K}(s) \frac{ds}{s^{2}} < \infty.$$
⁽²⁾

Lemma 1.1 [24]. If K satisfy the condition (2), then the function

$$K_1(t) = t \int_t^\infty \frac{K(s)}{s^2} ds \quad (\text{where, } 0 < t < \infty),$$

has the following properties:

- (A) K_1 is nondecreasing on $(0,\infty)$.
- (B) $K_1(t)/t$ is nondecreasing on $(0,\infty)$.
- (C) $K_1(t) \ge K(t)$ for all $t \in (0, \infty)$.

(D)
$$K_1 \leq K \text{ on } (0,1].$$

If K(t) = K(1) for $t \ge 1$, then we also have

(E) $K_1(t) = K_1(1) = K(1)$ for $t \ge 1$, so $K_1 \approx K$ on $(0, \infty)$.

Lemma 1.2 [24]. If K satisfy the condition (2), then we can find another non-negative weight function given by

$$K_1(t) = t \int_t^\infty \frac{K(s)}{s^2} ds$$
 (where, $0 < t < \infty$),

such that $Q_K = Q_{K_1}$ and that the new function K_1 has the following properties:

- (A) K_1 is nondecreasing on $(0,\infty)$.
- (B) $K_1(t)/t$ is nondecreasing on $(0,\infty)$.
- (c) $K_1(t)$ satisfies condition (1).
- (d) $K_1(2t) \approx K_1(t) \text{ on } (0,\infty).$
- (e) $K_1(t) \approx K(t)$ on (0, 1].
- (f) K_1 is differentiable on $(0,\infty)$.
- (g) K_1 is concave on $(0,\infty)$.
- (h) $K_1(t) = K_1(1)$ for $t \ge 1$.

Definition 1.4 (see [25]). Let a function $K: [0, \infty) \to [0, \infty)$. The space Q_K is defined by

$$Q_{K} = \left\{ f \in H(\mathbb{D}) : \sup_{a \in \mathbb{D}} \int_{\mathbb{D}} |f'(z)|^{2} K(g(z,a)) \, dA(z) < \infty \right\}.$$

If

$$\lim_{|a|\to 1^-} \sup_{a\in\mathbb{D}} \int_{\mathbb{D}} |f'(z)|^2 K(g(z,a)) \, dA(z) = 0,$$

then $f \in Q_{K,0}$. Clearly, if $K(t) = t^p$, then $Q_K = Q_p$.

Li et al. [10] defined the hyperbolic Q_K type space Q_K^* as follows.

Definition 1.5. Let $K : [0, \infty) \to [0, \infty)$. The hyperbolic space Q_K^* consists of those functions $f \in B(\mathbb{D})$ for which

$$\left\|f\right\|_{\mathcal{Q}_{K}^{*}}^{2}=\sup_{a\in\mathbb{D}}\int_{\mathbb{D}}\left(f^{*}(z)\right)^{2}K(g(z,a))\,dA(z)<\infty.$$

Download English Version:

https://daneshyari.com/en/article/483414

Download Persian Version:

https://daneshyari.com/article/483414

Daneshyari.com