
ORIGINAL ARTICLE

Properties of superposition operators acting

between B�l and Q�K

Alaa Kamal

Port Said University, Faculty of Science, Department of Mathematics, Port Said 42521, Egypt

Received 3 June 2014; revised 16 October 2014; accepted 3 January 2015

Available online 25 March 2015

KEYWORDS

Superposition operators;

B�l;
Lipschitz continuity;

Compactness

Abstract In this paper we introduce natural metrics in the hyperbolic Bloch and QK-type spaces

with respect to which these spaces are complete. Moreover, Lipschitz continuous, bounded and

compact superposition operators S/ from the hyperbolic Bloch type space to the hyperbolic

QK-type space are characterized by conditions depending only on the analytic symbol /.
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1. Introduction

In 1979, Yamashita [1] introduced originally the concept of
systematically hyperbolic function classes. Subsequently, this
concept has studied for hyperbolic Hardy, BMOA and

Dirichlet-classes (see, e.g., [1,3–7]). In the last decades, Smith
[8] studied inner functions in the hyperbolic little Bloch-class.
The hyperbolic counter parts of the Qp-spaces were studied

by Li [9] and Li et al. [10].

On the other hand, Cámera and Giménez [11,12] studied
the Bergman space Ap, the space of all Lp functions (with
respect to Lebesgue area measure) which is analytic in the unit

disk. They showed that S/ðApÞ � Aq if and only if / is a

polynomial of degree at most p=q where S/ : LpðDÞ ! LqðDÞ
is the superposition operator. Later, Buckley and Vukotic
[13,14] introduced superposition operators from Besov spaces

into Bergman spaces and univalent interpolation in Besov
spaces. Also, in [15], Alvarez et al. characterized superposition
operators between the Bloch space and Bergman spaces.

Recently, Wen Xu [16] studied superposition operators on
Bloch-type spaces.

Let X and Y be two metric spaces of analytic functions on

the unit disk D ¼ fz 2 C :j z j< 1g. Assume that / denotes a
complex-valued function in the plane C. The superposition
operator S/ on Xdefined by

S/ðfÞ :¼ / � f; f 2 X:

If / � f 2 Y for f 2 X, we say that / acts by superposition from
Xinto Y. As in Wen Xu [16] if X contains linear functions, /
must be an analytic function.

Let HðDÞ be the class of analytic functions on D. Also,

BðDÞ denotes the class of all analytic functions on D such that
jfðzÞj < 1 for all z 2 D. It is clear that BðDÞ � HðDÞ.
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Hyperbolic derivative for analytic functions on the unit
disk D.

f �ðzÞ ¼ jf 0ðzÞj
1�jfðzÞj2 (cf. [17]).

The spaces of analytic functions, have been actively appear-

ing in different areas of mathematical sciences such as dynami-
cal systems, theory of semigroups, probability, mathematical
physics and quantum mechanics (see [18–20] and others).

Now, we list the following definitions.

Definition 1.1 [2]. Let f be an analytic function in D and
0 < a <1. The a-Bloch space Ba is defined by

Ba ¼ f 2 HðDÞ : kfkBa ¼ sup
z2D
ð1� jzj2Þajf0ðzÞj <1

� �
;

the little a-Bloch space Ba
0 is given as follows

Ba
0 ¼ f 2 HðDÞ : kfkBa

0
¼ lim
jzj!1�

ð1� jzj2Þajf0ðzÞj ¼ 0

� �
:

The spaces B1 and B1
0 are called as the Bloch space, and little

Bloch space and denoted by B and B0 respectively (see [21]).

A positive continuous function l on ½0; 1Þ is called normal if

there are three constants 0 6 d < 1 and 0 < a < b such that.

i. lðrÞ
ð1�rÞa is decreasing on ½d; 1Þ and limr!1

lðrÞ
ð1�rÞa ¼ 0;

ii. lðrÞ
ð1�rÞb is increasing on ½d; 1Þ and limr!1

lðrÞ
ð1�rÞb ¼ 1.

Definition 1.2 [22]. A function f 2 HðDÞ such that

kfkl :¼ sup
z2D

lðjzjÞf0ðzÞ <1

is called a l-Bloch function. The space of all l-Bloch functions
is denoted by Bl.

It is readily seen that Bl is a Banach space with the norm

kfkBl
:¼ jfð0Þj þ kfkl. Also, when lðzÞ ¼ 1� jzj2, the space

Bl is just the Bloch space which is denoted by B; while when

lðzÞ ¼ ð1� jzj2Þa with a > 0, the space Bl becomes the

a-Bloch space which is denoted by Ba.

The hyperbolic l-Bloch space is defined as follows:

Definition 1.3 [23]. The sets of f 2 BðDÞ for which

B�l ¼ f : f analytic in D and sup
z2D

lðjzjÞf�ðzÞ <1
� �

:

The little hyperbolic Bloch space B�l;0 is a subspace of B�l
consisting of all f 2 B�l such that

lim
jzj!1�

lðjzjÞf �ðzÞ ¼ 0:

Following [23], the authors defined a natural metric on the
hyperbolic l-Bloch space B�l in the following way:

dðf; g;B�lÞ :¼ dB�lðf; gÞ þ kf� gkBl
þ jfð0Þ � gð0Þj;

where

dB�lðf; gÞ :¼ sup
a2D

f 0ðzÞ
1� jfðzÞj2

� g0ðzÞ
1� jgðzÞj2

�����
�����lðjzjÞ

for f; g 2 B�l.

The following conditions have played crucial roles in the
study of QK spaces:Z 1

0

/KðsÞ
ds

s
<1: ð1Þ

Z 1

1

/KðsÞ
ds

s2
<1: ð2Þ

Lemma 1.1 [24]. If K satisfy the condition (2), then the
function

K1ðtÞ ¼ t

Z 1

t

KðsÞ
s2

ds ðwhere; 0 < t <1Þ;

has the following properties:

ðAÞ K1 is nondecreasing on ð0;1Þ.
ðBÞ K1ðtÞ=t is nondecreasing on ð0;1Þ.
ðCÞ K1ðtÞP KðtÞ for all t 2 ð0;1Þ.
ðDÞ K1 K K on ð0; 1�.

If KðtÞ ¼ Kð1Þ for t P 1, then we also have

ðEÞ K1ðtÞ ¼ K1ð1Þ ¼ Kð1Þ for t P 1, so K1 � K on ð0;1Þ.

Lemma 1.2 [24]. If K satisfy the condition (2), then we can find
another non-negative weight function given by

K1ðtÞ ¼ t

Z 1

t

KðsÞ
s2

ds ðwhere; 0 < t <1Þ;

such that QK ¼ QK1
and that the new function K1 has the follow-

ing properties:

ðAÞ K1 is nondecreasing on ð0;1Þ.
ðBÞ K1ðtÞ=t is nondecreasing on ð0;1Þ.
ðcÞ K1ðtÞ satisfies condition (1).
ðdÞ K1ð2tÞ � K1ðtÞ on ð0;1Þ.
ðeÞ K1ðtÞ � KðtÞ on ð0; 1�.
ðf Þ K1 is differentiable on ð0;1Þ.
ðgÞ K1 is concave on ð0;1Þ.
ðhÞ K1ðtÞ ¼ K1ð1Þ for t P 1.

Definition 1.4 (see [25]). Let a function K : ½0;1Þ ! ½0;1Þ.
The space QK is defined by

QK ¼ f 2 HðDÞ : sup
a2D

Z
D

jf 0ðzÞj2Kðgðz; aÞÞdAðzÞ <1
� �

:

If

lim
jaj!1�

sup
a2D

Z
D

jf0ðzÞj2Kðgðz; aÞÞdAðzÞ ¼ 0;

then f 2 QK;0. Clearly, if KðtÞ ¼ tp, then QK ¼ Qp.

Li et al. [10] defined the hyperbolic QK type space Q�K as

follows.

Definition 1.5. Let K : ½0;1Þ ! ½0;1Þ. The hyperbolic space
Q�K consists of those functions f 2 BðDÞ for which

kfk2Q�
K
¼ sup

a2D

Z
D

ðf �ðzÞÞ2Kðgðz; aÞÞdAðzÞ <1:
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