

Egyptian Mathematical Society

Journal of the Egyptian Mathematical Society

www.etms-eg.org www.elsevier.com/locate/joems

ORIGINAL ARTICLE Generalized ψ^* -closed sets in bitopological spaces

H.M. Abu Donia^{a,*}, M.A. Abd Allah^b, A.S. Nawar^b

^a Department of Mathematics, Faculty of Science, Zagazig University, Egypt ^b Department of Mathematics, Faculty of Science, Minoufia University, Egypt

Received 25 January 2014; revised 4 December 2014; accepted 18 December 2014 Available online 2 February 2015

KEYWORDS

 $ij \cdot \psi^*$ -closed sets; $ij \cdot \psi^*$ -continuous functions; $ij - T_{1/5}$ spaces; $ij - T_{1/5}^{\psi^*}$ spaces; $ij - \psi^* T_{1/5}$ spaces **Abstract** In this paper, we introduce and study a new class of sets in a bitopological space (X, τ_1, τ_2) , namely, $ij \cdot \psi^*$ -closed sets, which settled properly in between the class of ji- α -closed sets and the class of ij- $g\alpha$ -closed sets. We also introduce and study new classes of spaces, namely, $ij - T_{1/5}$ spaces, ij- T_e spaces, ij- αT_e spaces, ij- αT_l spaces and ij- αT_l spaces. As applications of ij- ψ^* -closed sets, we introduce and study four new classes of spaces, namely, $ij - T_{1/5}^{\psi^*}$ spaces, $ij - \alpha T_e$ spaces, $ij - \alpha T_e$ spaces), $ij - \alpha T_l$ spaces and ij- αT_l spaces. The class of ij- ψ^* range (both classes contain the class of $ij - T_{1/5}$ spaces), ij- αT_k spaces and ij- αT_k spaces. The class of ij- T_k spaces is properly placed in between the class of ij- T_e spaces and the class of ij- αT_k spaces and the dual of the class of $ij - T_{1/5}^{\psi^*}$ spaces to the class of ij- αT_k spaces and the dual of the class of ij- T_l spaces to the class of ij- T_k spaces is the class of $ij - T_{1/5}^{\psi^*}$ spaces and also that the dual of the class of ij- T_l spaces to the class of ij- T_k spaces is the class of $ij - \alpha T_k$ spaces. Further we introduce and study ij- ψ^* -continuous functions and ij- ψ^* -irresolute functions.

2010 MATHEMATICAL SUBJECT CLASSIFICATION: 54 C 55; 54 C 10; 54 C 10; 54 E 55

© 2015 Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society.

1. Introduction

Recently the topological structure τ on a set X has a lot of applications in many real life applications. The abstractness of a set X enlarges the range of its applications. For example, a special type of this structure is the basic structure for rough set theory [1]. Alexandroff topologies are widely applied in the field of digital topologies [2]. Moreover, τ and its generalizations are applied in biochemical studies [3].

Peer review under responsibility of Egyptian Mathematical Society.

The work presented in this paper will open the way for using two viewpoints in these applications. That is, to apply two topologies at the same time. The concepts of g-closed sets, gsclosed sets, sg-closed sets, α g-closed sets, α gclosed sets, gsp-closed sets, α g-closed sets, gpclosed sets, gsp-closed sets and spg-closed sets have been introduced in topological spaces (cf. [4–10]). El-Tantawy and Abu-Donia [11] introduced the concepts of (*ij*-GC(X), *ij*-GSC(X), *ij*-SGC(X), *ij*- α GC(X), *ij*- α GC(X), *ij*-GPC(X), *ij*-GSPC(X), and *ij*-SPGC(X)) subset of (X, τ_1 , τ_2). Abd Allah and Nawar [12] introduced The concept of ψ^* -open sets and studied The properties of $T_{1/5}$, T_e , αT_e , T_l , αT_l . In this paper, we introduce a new class of sets in a bitopological space (X, τ_1 , τ_2), namely, *ij*- ψ^* closed sets, which settled properly in between the class of *ji*- α closed sets and the class of *ij*- α -closed sets. And we extend the properties to a bitopological space (X, τ_1 , τ_2). Also we use

http://dx.doi.org/10.1016/j.joems.2014.12.005

1110-256X © 2015 Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society.

^{*} Corresponding author.

the family of $ij - \psi^*$ -closed sets to introduce some types of properties in (X, τ_1, τ_2) , and we study the relation between these properties. The concepts of pre-continuous, semi-continuous, α -continuous, sp-continuous, g-continuous, α g-continuous, ga-continuous, gs-continuous, sg-continuous, gsp-continuous, spg-continuous, gp-continuous, gc-irresolute, gs-irresolute, α g-irresolute and g α -irresolute functions have been introduced in topological spaces (cf. [7,10,13-22]). El-Tantawy and Abu-Donia [11] introduced the concepts of (ij-pre-continuous, ijsemi-continuous, *ij-α*-continuous, *ij-sp*-continuous, *ij-g*-continuous, ij-ag-continuous, ij-ga-continuous, ij-gs-continuous, ijsg-continuous, ij-gsp-continuous, ij-spg-continuous, ij-gp-continuous, *ij*-gc-irresolute, *ij*-gs-irresolute, *ij*-ag-irresolute and *ij* $g\alpha$ -irresolute) functions in bitopological spaces. In this paper, we introduce a new functions in a bitopological space (X, τ_1, τ_2) τ_2), namely, $ij \cdot \psi^*$ -continuous functions and $ij \cdot \psi^*$ -irresolute functions.

2. Preliminaries

Definition 2.1. [23] A subset A of a bitopological space (X, τ_1, τ_2) is called:

- (1) *ij*-preopen if $A \subseteq \tau_i$ -int(τ_j -cl(A)) and *ij*-preclosed if τ_i -cl(τ_j -int(A)) $\subseteq A$.
- (2) *ij*-semi-open if A ⊆ τ_j-cl(τ_i-int(A)) and *ij*-semi-closed if τ_jint(τ_i-cl(A)) ⊆ A.
- (3) *ij*- α -open if $A \subseteq \tau_r$ -int(τ_r -cl(τ_r -int(A))) and *ij*- α -closed if τ_r cl(τ_r -int(τ_i -cl(A))) $\subseteq A$.
- (4) *ij*-semi-preopen if $A \subseteq \tau_{\tau} \operatorname{cl}(\tau_{\tau} \operatorname{int}(\tau_{\tau} \operatorname{cl}(A)))$ and *ij*-semi preclosed if $\tau_{\tau} \operatorname{int}(\tau_{\tau} \operatorname{cl}(\tau_{\tau} \operatorname{int}(A))) \subseteq A$.

The class of all *ij*-preopen (resp. *ij*-semi-open, *ij*- α -open and *ij*-semi-preopen) sets in a bitopological space (X, τ_1, τ_2) is denoted by *ij*-PO(X) (resp. *ij*-SO(X), *ij*- $\alpha O(X)$ and *ij*-SPO(X)). The class of all *ij*-preclosed (resp. *ij*-semi-closed, *ij*- α -closed and *ij*-semi-preclosed) sets in a bitopological space (X, τ_1, τ_2) is denoted by *ij*-PC(X) (resp. *ij*-SC(X), *ij*- $\alpha C(X)$ and *ij*-SPC(X)).

Definition 2.2. [23] For a subset *A* of a bitopological space (*X*, τ_1 , τ_2), the *ij*-pre-closure (resp. *ij*-semi-closure, *ij*- α -closure and *ij*-semi-pre-closure) of *A* are denoted and defined as follow:

- (1) $ij-pcl(A) = \cap \{F \subset X: F \in ij-PC(X), F \supseteq A\}.$
- (2) ij-scl $(A) = \cap \{F \subset X: F \in ij$ -SC $(X), F \supseteq A\}$.
- (3) $ij \alpha cl(A) = \cap \{F \subset X: F \in ij \alpha C(X), F \supseteq A\}.$
- (4) ij-spcl(A) = $\cap \{F \subset X: F \in ij$ -SPC(X), $F \supseteq A\}$.

Dually, the *ij*-preinterior (resp. *ij*-semi-interior, *ij*- α -interior and *ij*-semi-preinterior) of A, denoted by *ij*-*pint*(A) (resp. *ij*-sint(A), *ij*- α int(A) and *ij*-spint(A)) is the union of all *ij*-preopen (resp. *ij*-semi-open, *ij*- α -open and *ij*-semi-preopen) subsets of X contained in A.

Definition 2.3. [11] A subset A of a bitopological space (X, τ_1, τ_2) is called:

- (1) *ij-g*-closed (denoted by *ij-GC(X)*) if, $A \subseteq U$, $U \in \tau_i \Rightarrow j$ cl $(A) \subseteq U$.
- (2) *ij-gs-*closed (denoted by *ij-GSC(X)*) if, $A \subseteq U$, $U \in \tau_i \Rightarrow ji-\text{scl}(A) \subseteq U$.

- (3) *ij-sg*-closed (denoted by *ij-SGC(X)*) if, $A \subseteq U$, $U \in ij$ - $SO(X) \Rightarrow ji$ -scl $(A) \subseteq U$.
- (4) *ij-ga*-closed (denoted by *ij-GaC(X)*) if, $A \subseteq U$, $U \in ij$ - $\alpha O(X) \Rightarrow ji$ - $\alpha cl(A) \subseteq U$.
- (5) *ij*- αg -closed (denoted by *ij*- $\alpha GC(X)$) if, $A \subseteq U$, $U \in \tau_i \Rightarrow ji$ - $\alpha cl(A) \subseteq U$.
- (6) *ij-gp*-closed (denoted by *ij-GPC(X)*) if, $A \subseteq U$, $U \in \tau_i \Rightarrow ji\text{-pcl}(A) \subseteq U$.
- (7) *ij-gsp*-closed (denoted by *ij-GSPC(X)*) if, $A \subseteq U$, $U \in \tau_i \Rightarrow ji\text{-spcl}(A) \subseteq U$.
- (8) *ij-spg*-closed (denoted by *ij-SPGC(X)*) if, $A \subseteq U$, $U \in ji$ -SPO(X)) $\Rightarrow ji$ -spcl $(A) \subseteq U$.

The complement of an ij-GC(X) (resp. ij-GSC(X), ij-SGC(X), ij- $G\alpha C(X)$, ij- $\alpha GC(X)$, ij-GPC(X), ij-GSPC(X), and ij-SPGC(X)) subset of (X, τ_1, τ_2) is called an ij-GO(X) (resp. ij-GSO(X), ij-SGO(X), ij- $G\alpha O(X)$, ij- $\alpha GO(X)$, ij-GPO(X), ij-GSPO(X), and ij-SPGO(X)) subset of (X, τ_1, τ_2) .

Definition 2.4. [11] A function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is called:

- (1) *ij*-pre-continuous if $\forall V \in i$ -C(Y), $f^{-1}(V) \in ij$ -PC(X). (2) *ij*-semi-continuous if $\forall V \in i$ -C(Y), $f^{-1}(V) \in ij$ -SC(X).
- (3) ij- α -continuous if $\forall V \in i$ -C(Y), $f^{-1}(V) \in ij$ - $\alpha C(X)$.
- (4) *ij-sp*-continuous if $\forall V \in i$ -C(Y), $f^{-1}(V) \in ij$ -SPC(X).
- (5) *ij-g*-continuous if $\forall V \in j$ -C(Y), $f^{-1}(V) \in ij$ -GC(X).
- (6) *ij*- αg -continuous if $\forall V \in j$ -C(Y), $f^{-1}(V) \in ij$ - $\alpha GC(X)$.
- (7) *ij-ga-continuous* if $\forall V \in j$ -C(Y), $f^{-1}(V) \in ij$ - $G\alpha C(X)$.
- (8) *ij-gs*-continuous if $\forall V \in j$ -C(Y), $f^{-1}(V) \in ij$ -GSC(X).
- (9) *ij-sg*-continuous if $\forall V \in j$ -C(Y), $f^{-1}(V) \in ij$ -SGC(X).
- (10) *ij-gsp*-continuous if $\forall V \in j$ -C(Y), $f^{-1}(V) \in ij$ -GSPC(X).
- (11) *ij-spg*-continuous if $\forall V \in j$ -C(Y), $f^{-1}(V) \in ij$ -SPGC(X).
- (12) *ij-gp*-continuous if $\forall V \in j$ -C(Y), $f^{-1}(V) \in ij$ -GPC(X).
- (13) *i*-continuous if $\forall V \in i C(Y), f^{-1}(V) \in i C(X)$.
- (14) *ij-gc*-irresolute if $\forall V \in ij$ -GC(Y), $f^{-1}(V) \in ij$ -GC(X).
- (15) *ij-gs*-irresolute if $\forall V \in ij$ -GSC(Y), $f^{-1}(V) \in ij$ -GSC(X).
- (16) *ij*- αg -irresolute if $\forall V \in ij$ - $\alpha GC(Y), f^{-1}(V) \in ij$ - $\alpha GC(X)$.
- (17) *ij-g* α -irresolute if $\forall V \in ij$ - $G\alpha C(Y)$, $f^{-1}(V) \in ij$ - $G\alpha C(X)$.

Definition 2.5. [12] A subset A of (X, τ) is called ψ^* -closed if $A \subseteq U$, $U \in G \alpha O(X) \Rightarrow \alpha cl(A) \subseteq U$. The complement of ψ^* -closed set is said to be ψ^* -open.

Definition 2.6. [12] A space (X, τ) is called:

- (1) $T_{1/5}$ space if $G\alpha C(X) = \alpha C(X)$. (2) $T_{1/5}^{\psi}$ space if $\psi^* C(X) = \alpha C(X)$. (3) $\psi^* T_{1/5}$ space if $G\alpha C(X) = \psi^* C(X)$. (4) T_e space if $GSC(X) = \alpha C(X)$. (5) αT_e space if $\alpha GC(X) = \alpha C(X)$. (6) T_k space if $\alpha GC(X) = \psi^* C(X)$. (7) αT_k space if $\alpha GC(X) = \psi^* C(X)$. (8) T_l space if $GSC(X) = G\alpha C(X)$. (9) αT_k space if $\alpha GC(X) = G\alpha C(X)$.
- (9) αT_l space if $\alpha GC(X) = G\alpha C(X)$.

Definition 2.7. [12] A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is called:

- (1) ψ^* -continuous if $\forall V \in C(Y), f^{-1}(V) \in \psi^*C(X)$.
- (2) ψ^* -irresolute if $\forall V \in \psi^* C(Y), f^{-1}(V) \in \psi^* C(X)$.
- (3) pre- ψ^* -closed if $A \in \psi^* C(X)$, $f(A) \in \psi^* C(Y)$.

Download English Version:

https://daneshyari.com/en/article/483418

Download Persian Version:

https://daneshyari.com/article/483418

Daneshyari.com