

Egyptian Mathematical Society

Journal of the Egyptian Mathematical Society

www.etms-eg.org www.elsevier.com/locate/joems

ORIGINAL ARTICLE

The quasi-uniform character of a topological semigroup

John Mastellos *

Department of Mathematics, University of Patras, 26504 Patras, Greece

Received 14 November 2012; revised 12 June 2014; accepted 17 June 2014 Available online 28 July 2014

KEYWORDS

Topological embedding; Quasi-uniformity; Specialization order; T_0 and not T_1 space **Abstract** The topological embedding of a topological semigroup *S*, commutative with the property of cancelation, into the group $G = S \times S/R$, (*R* the equivalence $(a, b)R(a', b') \iff ab' = a'b)$ to which *S* is algebraically embedded, was the subject of the search for the mathematicians of a long period. It was based on the fact that *S* must naturally be a uniform topological space, as every topological group was. The present paper is devoted to the fact that a quasi-uniformity is defined to any topological space, thus to any topological semigroup.

2010 MATHEMATICS SUBJECT CLASSIFICATION: 06A11; 06F20; 22A15; 54E15; 20F60; 54H10; 20M05; 20N02

© 2014 Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society.

1. Introduction

1.1. In a series of papers for a long period the mathematicians engaged in *the embedding of a topological commutative semigroup with cancelation to a topological group.* The basic idea was very simple: since a topological group is a *uniform space*, that is a very nice space, it seems a natural demand for a topological semigroup, which embeds to a topological group, to be a uniform space as well. (Cf. the paper of E. Scheiferdecker [12, 1956] and the papers of [11,14,15,4,5,1,2,6] and others). In [3, 2001] the authors refer to a *quasi-uniformity* on a

* Tel.: + 30 2610996751.

Peer review under responsibility of Egyptian Mathematical Society.

ELSEVIER Production and hosting by Elsevier

semigroup, that is: a topological semigroup S has a neutral element e and a neighborhood filter $\eta(e)$ of e which gives to S a *quasi-uniform structure*. On the other hand, the operations on the topological semigroups and groups must be continuous.

In the present paper we start with the *quasi-uniformity* which every topological T_0 structure has, hence every topological commutative with cancelation semigroup has. We suppose that the topology of the given *topological semigroup* is *weaker* or *equal* than the one which this structure may has. It is evident that if S is a semigroup and R is an *equivalence relation* on it, the quotient S/R is not a group, not even a semigroup. Meantime, it is defined the *specialization ordering* which has every T_0 but not T_1 topological space. The compatibility of the structures (of topology and of being the space semigroup) and the extension which Szpilran in [13] induces to an ordered space, seem to be obligatory for us.

1.2. In the remaining part of this paragraph we give necessary elements from the relative theory.

1110-256X © 2014 Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society. http://dx.doi.org/10.1016/j.joems.2014.06.012

E-mail address: kontolat@math.upatras.gr

A semigroup S is called topological semigroup, if there is a topology τ such that the function

$$\Phi: S \times S \to S, \Phi(x, y) = x \cdot y \text{ (or simply = } xy)$$

is continuous. A group G is called *topological group* if the functions Φ and K

$$\Phi: S \times S \to S, \Phi(x, y) = x \cdot y \text{ and } K: G \to G, K(g) = g^{-1}$$

are continuous.

A uniform space on a set X is a filter U on $X \times X$ such that: (a) Each member of U contains the diagonal of $X \times X$. (b) If $U \in \mathbf{U}$, then $V \circ V \subseteq U$ for some $V \in \mathbf{U}$. (c) There is a base of U from symmetrical elements. The elements of U are called *entourages*.

If the structure lacks the condition (c), then the space is a *quasi-uniform*. In a semi-group *S* (resp. a *group G*) by $\tau(\mathbf{U})$ we denote the topology that originated by a *quasi-uniformity* (resp. a *uniformity*) **U**. Also by $(S, \cdot, \tau(\mathbf{U}))$ we denote the whole structure.

Besides, W.J. Pervin (in [9]) in 1962, firstly published the statement: "For every topological space there is a quasi-uniformity which induces the given topology". Pervin, in the above paper, says that for a topological space (X, τ) , the sets

$$U_O = \{ (O \times O) \cup [(X \setminus O) \times X] \mid O \in \tau \}$$

define a base for a *quasi-uniformity*, where $O \in \tau$. For every fixed O, the set U_O is an entourage of the quasi-uniformity.

1.3. The quotient structure (or quotient semigroup) $Q = Q(S, \Sigma)$, (Σ is a commutative sub-semigroup of S), is a set whose elements are of the form $a\alpha^{-1}, a \in S, \alpha \in \Sigma$. So $Q(S, \Sigma) = S \times \Sigma/R$, where R is an equivalence relation defined by: $(a, b)R(c, d) \iff ad = bc$, the operation in $S \times \Sigma$ is component-wise. If the semigroup S is commutative we can write Q = Q(S, S) for the quotient structure and the structure $G = S \times S/R$, (R the known relation), is a group to which S is algebraically embedded. This topological embedding of S into the above G is exactly the object of the "embedding" which mathematicians made during the period we have referred to.

1.4. The authors of [3] define a *quasi-uniformity* for a topological commutative semigroup (S, \cdot, τ) . The sets of the form

$$\overline{U} = \{ (x, y) \mid y \in xU, U \in \eta(e) \}.$$

are the entourages of the space. The proof of this proposition is based on the fact that for every element U of the $\eta(e)$, there is another element V, such that $V \cdot V \subseteq U(e)$. On the other hand, this construction of a quasi-uniform space is compatible with the one introducing by Pervin.

1.5. In his classical paper [12], Scheiferdecker gave the notion of the *invariance for a uniformity* U. Let $U \in U$ and $a, b, k \in S$. Then

$$(a,b) \in U \iff (ka,kb) \in U.$$

The main theorem in [12] which we are interesting to, is the following:

1.6. Theorem (Scheiferdecker, [12, p. 375]). *Necessary and* sufficient conditions for a topological semigroup (S, \cdot, τ) (τ the topology of S) to embed into its quotient group $G = S \times S/R$, where R is the known equivalence relation, are the following:

- (a) The topology τ is the one induced by a uniformity U.
- (b) The uniform structure may be defined via entourages which fulfill the "invariance" property. □

Scheiferdecker considered the above *G* and the structure $(S, \cdot, \tau = \tau(\mathbf{U}))$, where the topology $\tau(\mathbf{U})$ is the one that is induced from the uniformity of **U**. He proved that the subsets

$$U_1 = \{ (A, B) \in Q \times Q | (A = \alpha^{-1}a, B = \beta^{-1}b) \text{ and} \\ (x\alpha = y\beta \in \Sigma \Rightarrow (xa, yb) \in U, U \in \mathbf{U}) \}$$

 $a, b \in S, \alpha, \beta \in \Sigma$, constitute the entourages of a new *uniformity*, whose the trace on S is the same topology τ . We denote this new uniformity by U₁.

1.7. This paper is divided into 3 paragraphs. More precisely, in 1 the paper's preliminaries are given. In paragraph 2 we present the main part of this research. Especially we examine and investigate many properties of a topological semigroup, without considering the notion of the quasi-uniformity (see for example 2.2, 2.3, 2.5, 2.6, 2.8, etc.). Finally, paragraph 3 refers to the specialization inequality define on a T_0 and not a T_1 space.

2. Quasi-uniform structure in a semigroup

In the sequel, *S* is always a *commutative semigroup with cancel ation*. The condition $aS \cap bS \neq \emptyset$, $a, b \in S$ ([8]), means that the equivalence relation *R* such that

$$(a,b)R(c,d) \iff ad = bc, a, b, c, d \in S,$$

is not void. We suppose that this condition is in valid through all the paper. The function

$$\pi: S \times S \to G, \pi((a, b)) = \overline{(a, b)}$$

assigns to each $(a, b) \in S \times S$ the equivalence class in G containing the element (a, b) and which we symbolize by $\overline{(a, b)}$. **2.1. Examples**

- In the real line we consider additively the set ℜ, (the set of real numbers), and as topology the one which has as base the intervals (a, +∞), a ∈ ℜ. The set ℜ is the set of symbols which finally we construct. We embed this in the set G = ℜ × ℜ/R, R the known equivalence relation, which is the natural construction of real numbers with the natural topology. The first topology is weakest of the second.
- (2) The same problem in the interval [0, 1] with operation the multiplication, the numbers their-selves are the symbols we note and the topology, the one which has as base the set of the form {(a, 1), a ∈ [0, 1)}. It embeds into G = [0, 1) × [0, 1)/R of the natural construction of the set of real number and with the natural topology. The former topology is again weaker than the topology of G.
- (3) If in 1. we consider as the first and the second topologies the Sorgenfrey topology of ℜ (the set of natural numbers) the results are the expected ones. The Sorgenfrey topology of ℜ which has as relation the couples: {(x, y) | x ≤ y < x + ε}.

2.2. Proposition. If a quasi-uniformity U is defined on a commutative with cancelation semigroup (S, \cdot) and has the property

$$(\forall U \in \mathbf{U})(\forall a \in S)[U \subseteq (a, a)U],$$

then S is a topological semigroup.

Download English Version:

https://daneshyari.com/en/article/483429

Download Persian Version:

https://daneshyari.com/article/483429

Daneshyari.com