

Egyptian Mathematical Society

Journal of the Egyptian Mathematical Society

www.etms-eg.org www.elsevier.com/locate/joems

Coefficient estimates for a subclass of analytic and bi-univalent functions

H.M. Srivastava ^{a,*}, Deepak Bansal ^b

^a Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia V8W 3R4, Canada

^b Department of Mathematics, Government College of Engineering and Technology, Bikaner 334004, Rajasthan, India

Received 11 February 2014; accepted 8 April 2014 Available online 10 May 2014

KEYWORDS

Analytic functions; Univalent functions; Subordination between analytic functions; Schwarz function; Bi-univalent functions; Koebe function **Abstract** In the present investigation, we consider a new subclass $\Sigma(\tau, \gamma, \varphi)$ of the class Σ consisting of analytic and bi-univalent functions in the open unit disk \mathbb{U} . For functions belonging to the class $\Sigma(\tau, \gamma, \varphi)$ introduced here, we obtain estimates on the first two Taylor–Maclaurin coefficients $|a_2|$ and $|a_3|$. Several related classes of analytic and bi-univalent functions in \mathbb{U} are also considered and connections to some of the earlier known results are pointed out.

2010 MATHEMATICS SUBJECT CLASSIFICATION: Primary 30C45; 30C50; Secondary 30C80

© 2014 Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society.

1. Introduction, definitions and preliminaries

Let \mathcal{A} denote the class of functions of the form:

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k,$$
(1.1)

which are analytic in the open unit disk

 $\mathbb{U} = \{ z : z \in \mathbb{C} \text{ and } |z| < 1 \}.$

We denote by S the subclass of A consisting of functions which are also univalent in \mathbb{U} (see, for details [1,2]). Let \mathcal{P} denote the family of functions p(z), which are analytic in \mathbb{U} such that

ELSEVIER

E-mail addresses: harimsri@math.uvic.ca (H.M. Srivastava), deepak bansal_79@yahoo.com (D. Bansal).

Peer review under responsibility of Egyptian Mathematical Society.

Production and hosting by Elsevier

p(0) = 1 and $\Re(p(z)) > 0$ $(z \in \mathbb{U}).$

An analytic function f is said to be subordinate to another analytic function g, written as

$$f(z) \prec g(z) \quad (z \in \mathbb{U}),$$

if there exists a Schwarz function w, which is analytic in \mathbb{U} with

$$w(0) = 0 \quad \text{and} \quad |w(z)| < 1 \quad (z \in \mathbb{U}),$$

such that

$$f(z) = g(w(z)).$$

In particular, if the function g is univalent in \mathbb{U} , then we have the following equivalence:

$$f(z) \prec g(z) \iff f(0) = g(0) \text{ and } f(\mathbb{U}) \subset g(\mathbb{U}).$$

It is known that, if f(z) is an analytic univalent function from a domain \mathbb{D}_1 onto a domain \mathbb{D}_2 , then the inverse function g(z) defined by

$$g(f(z)) = z \quad (z \in \mathbb{D}_1)$$

1110-256X © 2014 Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society. http://dx.doi.org/10.1016/j.joems.2014.04.002

^{*} Corresponding author.

is an analytic and univalent mapping from \mathbb{D}_2 onto \mathbb{D}_1 . Furthermore, it is well known by the familiar *Koebe One-Quarter Theorem* (see [1]) that the image of \mathbb{U} under every function $f \in S$ contains a disk of radius $\frac{1}{4}$. Thus, clearly, every univalent function f in \mathbb{U} has an inverse f^{-1} satisfying the following conditions:

$$f^{-1}(f(z)) = z \quad (z \in \mathbb{U})$$

and

$$f(f^{-1}(w)) = w \quad \left(|w| < r_0(f); \ r_0(f) \ge \frac{1}{4}\right).$$

The inverse of the function f(z) has a series expansion in some disk about the origin of the form:

$$f^{-1}(w) = w + \gamma_2 w^2 + \gamma_3 w^3 + \cdots.$$
 (1.2)

It was shown earlier (see [3,4]) that the inverse of the Koebe function provides the best bound for all $|\gamma_k|$ in (1.2). New proofs of this result, together with unexpected and unusual behavior of the coefficients γ_k in (1.2) for various subclasses of the univalent function class S, have generated further interest in this problem (see, for details, [5–8]).

A function f(z), which is univalent in a neighborhood of the origin, and its inverse $f^{-1}(w)$ satisfy the following condition:

$$f(f^{-1}(w)) = w$$

or, equivalently,

$$w = f^{-1}(w) + a_2[f^{-1}(w)]^2 + a_3[f^{-1}(w)]^3 + \cdots$$
 (1.3)

Using (1.1) and (1.2) in (1.3), we have

$$g(w) = f^{-1}(w) = w - a_2 w^2 + (2a_2^2 - a_3)w^3 + \cdots .$$
(1.4)

A function $f \in A$ is said to be *bi-univalent* in \mathbb{U} if both f and f^{-1} are univalent in \mathbb{U} . We denote by Σ the class of all functions f(z) which are bi-univalent in \mathbb{U} and are given by the Taylor-Maclaurin series expansion (1.1).

The familiar Koebe function is not a member of Σ because it maps the unit disk \mathbb{U} univalently onto the entire complex plane minus a slit along the line $-\frac{1}{4}$ to $-\infty$. Hence the image domain does not contain the unit disk \mathbb{U} .

In 1985 Louis de Branges [9] proved the celebrated *Bieberbach Conjecture* which states that, for each $f(z) \in S$ given by the Taylor–Maclaurin series expansion (1.1), the following coefficient inequality holds true:

$$|a_n| \leq n \quad (n \in \mathbb{N} \setminus \{1\}),$$

N being the set of positive integers. Lewin [10] investigated the class Σ of bi-univalent functions and, by using Grunsky inequalities, he showed that $|a_2| < 1.51$. Subsequently, Brannan and Clunie [11] conjectured that $|a_2| \leq \sqrt{2}$. Netanyahu [12], on the other hand, showed that (see also [13])

$$\max_{f\in\Sigma}|a_2|=\frac{4}{3}.$$

Later in 1981, Styer and Wright [14] showed that there are functions $f(z) \in \Sigma$ for which $|a_2| > \frac{4}{3}$. By considering the function $h_{\theta}(z)$ given by

$$\begin{split} h_{\theta}(z) &:= \left(\frac{ze^{-i\theta}}{1 - (ze^{-i\theta})^2}\right)\cos\theta \\ &+ \left[\frac{i}{2}\log\left(\frac{1 + ze^{-i\theta}}{1 - ze^{-i\theta}}\right)\right]\sin\theta \quad \left(0 \leq \theta < \frac{\pi}{2}\right), \end{split}$$

so that, obviously, $h_{\theta} \in S$, Styer and Wright [14] showed that, for θ sufficiently near $\frac{\pi}{2}$, $h_{\theta} \in \Sigma$. In the same year 1985, Tan [15] showed that $|a_2| \leq 1.485$, which is the best known estimate for functions in the class Σ . The coefficient estimate problem involving the bound of $|a_n|(n \in \mathbb{N} \setminus \{1, 2\})$ for each $f \in \Sigma$ given by (1.1) is still an open problem.

For a further historical account of functions in the class Σ , see the work by Srivastava et al. [16] (see also [17,18]). In fact, judging by the remarkable flood of papers on non-sharp estimates on the first two coefficients $|a_2|$ and $|a_3|$ of various subclasses of the bi-univalent function class Σ (see, for example, [19–30,35,31–34,15,36–38]), the above-cited recent pioneering work of Srivastava et al. [16] has apparently revived the study of analytic and bi-univalent functions in recent years (see also [39,40]).

In the present investigation, we derive estimates on the initial coefficients $|a_2|$ and $|a_3|$ of a new subclass of the bi-univalent function class Σ . Several related classes are also considered and connections to earlier known results are made. The classes introduced in this paper are motivated by the corresponding classes investigated in [41–45].

Let φ be an analytic function with positive real part in \mathbb{U} such that $\varphi(0) = 1, \varphi'(0) > 0$ and $\varphi(\mathbb{U})$ is symmetric with respect to the real axis. Such a function has a series expansion of the form:

$$\varphi(z) = 1 + B_1 z + B_2 z^2 + B_3 z^3 + \cdots \quad (B_1 > 0).$$
 (1.5)

We now introduce the following class of bi-univalent functions.

Definition 1. Let $0 \leq \gamma \leq 1$ and $\tau \in \mathbb{C} \setminus \{0\}$. A function $f \in \Sigma$ is said to be in the class $\Sigma(\tau, \gamma, \varphi)$ if each of the following subordination conditions holds true:

$$1 + \frac{1}{\tau} [f'(z) + \gamma z f''(z) - 1] \prec \varphi(z) \qquad (z \in \mathbb{U})$$

$$(1.6)$$

and

$$1 + \frac{1}{\tau} [g'(w) + \gamma w g''(w) - 1] \prec \varphi(w) \qquad (w \in \mathbb{U}), \tag{1.7}$$

where $g(w) = f^{-1}(w)$.

In our investigation of the coefficient problem for functions in the class $\Sigma(\tau, \gamma, \varphi)$, we shall need the following lemma.

Lemma 1 (see [1]). Let the function $p \in \mathcal{P}$ be given by the following series:

$$p(z) = 1 + c_1 z + c_2 z^2 + c_3 z^3 + \cdots \quad (z \in \mathbb{U}).$$
(1.8)

The sharp estimate given by

$$c_n \leq 2 \qquad (n \in \mathbb{N}), \tag{1.9}$$

holds true.

2. A set of main results

For functions in the class $\Sigma(\tau, \gamma, \varphi)$, the following result is obtained.

Theorem 1. Let $f(z) \in \Sigma(\tau, \gamma, \phi)$ be of the form (1.1). Then

Download English Version:

https://daneshyari.com/en/article/483432

Download Persian Version:

https://daneshyari.com/article/483432

Daneshyari.com