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Abstract With influenza as a prototype, we propose a compartmental model for a pandemic by

taking into account of recruitment. The model has a threshold dynamics. Precisely, when the basic

reproduction number R0 6 1, the disease free equilibrium is globally asymptotically stable; when

R0 > 1, the disease free equilibrium is unstable and there is a unique endemic equilibrium which

globally attracts all solutions except the trivial one (the disease free equilibrium). These results

are established by applying the LaSalle’s invariance principle.
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1. Introduction

Influenza is one of the most common contagious respiratory
illnesses caused by viruses related to negative-sense RNA orth-

omyxovirade family [1]. The virus can spread from person to
person through air by coughs, sneezes or from infected
surfaces, and by the direct contact of infected persons. It is also
able to shift from species to species and to change its form

rapidly. This highly spreadable disease causes about three to
five million cases of acute respiratory infections and
250,000–500,000 deaths every year worldwide [2,3]. Even in

the developed countries such as USA, Europe, and Canada,

the morbidity and the mortality are very high. As an example,

in USA more than 200,000 people are hospitalized from flu
complication that results in an average 23,600 (approximately)
annual deaths [4].

Anyone infected by flu may have symptoms of fever, sore
throat, muscle pains, headache, coughing and fatigue. Individ-
uals incubate the virus for nearly 1–3 days before becoming

infectious. The infectious period is generally 3–6 days, and
the duration of the disease is typically 2–7 days [5].

Epidemic models are important to study the transmission

dynamics of infectious diseases and their future risks to human
population, and to seek the optimum prevention and control
strategies. They provide us with useful information, such as
disease transmission, spread of disease agent, epidemiological

trends, and preparedness for the disease outbreak.
Arino et al. [6] argued that ‘‘as a general policy in preparing

for an outbreak of a disease whose parameters are not yet

known, it would be better to use a general compartmental
model involving relatively few parameters and not depending
critically on the particular as yet unknown setting.’’ As a
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result, they proposed a compartmental SLIAR epidemic model
with influenza being a prototype. This model was built on the
assumption that a significant fraction of the infected individu-

als never develop symptoms (called asymptomatic cases). The
people with asymptomatic infection are able to transmit the
disease although they do not have any sign of the disease.

Therefore, infectious population is divided into two compart-
ments according to whether or not they develop the symptoms
after being infected. They calculated the basic reproduction

number and obtained the final size relation. In their study, they
neglected the important factor of recruitment.

The purpose of this paper is to study the effect of recruit-
ment. It turns out that the dynamics is quite different from that

in [6]. The remaining of this paper is organized as follows. First
we formulate the model in Section 2. Then, in Sections 3 and 4,
we study the stability of the disease free equilibrium and the

endemic equilibrium, respectively. The paper concludes with
a brief discussion.

2. Model formulation

The total population NðtÞ is divided into five classes: suscepti-
ble (SðtÞ), latent (LðtÞ), symptomatically infective (IðtÞ),
asymptomatically infective (AðtÞ), and recovered (RðtÞ). It is
assumed that there is an incubation period between infection
and development of disease before an infected person is being

infectious. Thus after being infected the susceptible individuals
first move to latent class, then to infectious class (either IðtÞ or
AðtÞ), and finally progress to recovered class.

To build a concrete model, we make the following

assumptions.

� There is a constant recruitment rate K into the susceptible

class and the natural death rate is l.
� The transmission coefficient of the symptomatic infective is

b, whereas the infectiousness due to asymptomatic individ-

uals is reduced by a factor d.
� The rate of having infectiousness is k while the probability
being symptomatic infective is p.

� The recovered rates for symptomatic and asymptomatic
classes are r1 and r2, respectively, and the death rates due
to symptomatic and asymptomatic infection are d1 and
d2, respectively.

Based on the above assumptions, we can sketch the trans-
mission diagram in Fig. 1. These assumptions lead to the

model

dS

dt
¼ K� ksðtÞS� lS;

dL

dt
¼ ksðtÞS� kL� lL;

dI

dt
¼ kpL� r1I� ðlþ d1ÞI;

dA

dt
¼ kð1� pÞL� r2A� ðlþ d2ÞA;

dR

dt
¼ r1Iþ r2A� lR;

ð2:1Þ

where ksðtÞ ¼ bðIþ dAÞ. Since the fifth equation in (2.1) is
decoupled from the other four equations, we only focus on
the first four equations of (2.1) in the sequel, namely,

dS

dt
¼ K� ksðtÞS� lS;

dL

dt
¼ ksðtÞS� kL� lL;

dI

dt
¼ kpL� r1I� ðlþ d1ÞI;

dA

dt
¼ kð1� pÞL� r2A� ðlþ d2ÞA:

ð2:2Þ

It is not difficult to show that the feasible region of (2.2)

C ¼ ðS;L; I;AÞ 2 R4
þ : Sþ Lþ Iþ A 6

K
l

� �

is a positively invariant and attracting set that attracts all solu-

tions of (2.2) with nonnegative initial conditions. For the long
term behavior of (2.2), we only consider solutions in C. In the
following two sections, we study the stability of the disease free

equilibrium and the endemic equilibrium.

3. The global asymptotic stability of the disease free equilibrium

It is easy to see that (2.2) has a unique disease free equilibrium
E0 ¼ ðS0; 0; 0; 0Þ, where S0 ¼ K=l. We first study the local sta-
bility of E0 by linearization.

Let

R0 ¼
bS0kp

ðkþ lÞðr1 þ lþ d1Þ
þ bdS0kð1� pÞ
ðkþ lÞðr2 þ lþ d2Þ

:

Note that R0 is called the basic reproduction number and it can
be calculated by the next generation matrix method [7].

Theorem 3.1. The disease free equilibrium E0 of (2.2) is locally
exponentially stable if R0 < 1 and is unstable if R0 > 1.

Proof. The Jacobian matrix of (2.2) at E0 is

JðE0Þ ¼

�l 0 �bS0 �bdS0

0 �ðkþ lÞ bS0 bdS0

0 kp �ðr1 þ lþ d1Þ 0

0 kð1� pÞ 0 �ðr2 þ lþ d2Þ

2
6664

3
7775:

Denote

A22 ¼
�ðkþ lÞ bS0 bdS0

kp �ðr1 þ lþ d1Þ 0

kð1� pÞ 0 �ðr2 þ lþ d2Þ

2
64

3
75:

Fig. 1 The transmission diagram for an SLIAR model of

influenza.
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