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Abstract In this paper, the exp(�U(n))-expansion method with the aid of Maple has been used to

obtain the exact solutions of the Kadomtsev–Petviashvili (KP) equation. Each of the obtained solu-

tions, namely hyperbolic function solutions, trigonometric function solutions and rational function

solutions, contain an explicit function of the variables in the considered equation. It has been shown

that the method provides a powerful mathematical tool for solving nonlinear wave equations in

mathematical physics and engineering problems.
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1. Introduction

Nonlinear evolution equations (NLEEs) i.e., partial differen-

tial equations with time t as one of the independent variables
have become a useful tool for describing the natural phenom-
ena of science and engineering. NLEEs arise not only from
many fields of mathematics, but also from other branches of

science such as physics, mechanics and material science. Exact
solutions of NLEEs play an important role in the proper
understanding of qualitative features of many phenomena

and processes in various areas of natural science. Even those

special exact solutions that do not have a clear physical mean-
ing can be used as test problems to verify the consistency and
estimate errors of various numerical, asymptotic, and approx-

imate analytical methods. Exact solutions can serve as a basis
for perfecting and testing computer algebra software packages
for solving NLEEs. It is significant that many equations of

physics, chemistry, and biology contain empirical parameters
or empirical functions. Exact solutions allow researchers to
design and run experiments, by creating appropriate natural

conditions, to determine these parameters or functions. There-
fore, investigation of exact traveling wave solutions is becom-
ing successively attractive in nonlinear sciences day by day.
However, not all equations posed of these models are solvable.

Hence it becomes increasingly important to be familiar with all
traditional and recently developed methods for solving these
models and the implementation of new methods. As a result,

many new techniques have been successfully developed by
diverse groups of mathematicians and physicists, such as, the
Kudryashov method [1], the Exp-function method [2–5], the
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Homotopy perturbation method [6,7], the modified simple
equation method [8–10], the (G0/G)-expansion method
[11–15], the exp(�U(n))-expansion method [16].

The objective of this article is to apply the exp(�U (n))-
expansion method to construct the exact solutions for
nonlinear evolution equations in mathematical physics via

the KP equation.
The article is prepared as follows: In Section 2, the

exp(�U(n))-expansion method is discussed; In Section 3, we

apply this method to the nonlinear evolution equation pointed
out above and in Section 4 conclusions are given.

2. Algorithm of the exp(�U(n))-expansion method

In this section we will describe the algorithm of the
exp(�U(n))-expansion method for finding traveling wave

solutions of nonlinear evolution equations. Suppose that a
nonlinear equation, say in two independent variables x and t
is given by

Pðu; ut; ux; utt; uxx; uxt; . . . . . . . . . . . .Þ ¼ 0; ð2:1Þ

where u(n) = u(x, t) is an unknown function, P is a polynomial

of u(x, t) and its partial derivatives in which the highest order
derivatives and nonlinear terms are involved. In the following,
we give the main steps of this method [16]:

Step 1. Combining the independent variables x and t into
one variable n = x± xt, we suppose that

uðx; tÞ ¼ uðnÞ; n ¼ x� xt; ð2:2Þ

The traveling wave transformation Eq. (2.2) permits us to
reduce Eq. (2.1) to the following ordinary differential equation
(ODE):

Qðu; u0; u00; . . . . . . . . .Þ ¼ 0: ð2:3Þ

where Q is a polynomial in u(n) and its derivatives, whereas
u0ðnÞ ¼ du

dn ; u
00ðnÞ ¼ d2u

dn2
, and so on.

Step 2. We suppose that Eq. (2.3) has the formal solution

uðnÞ ¼
Xn
i¼0

aiðexpð�UðnÞÞÞi; ð2:4Þ

where ai (0 6 i 6 n) are constants to be determined, such that

an „ 0, and U = U(n) satisfies the following ODE:

U0ðnÞ ¼ expð�UðnÞÞ þ l expðUðnÞÞ þ k; ð2:5Þ

Eq. (2.5) gives the following solutions:
When k2 � 4l > 0, l „ 0,

UðnÞ ¼ ln

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2 � 4lÞ

q
tanh

ffiffiffiffiffiffiffiffiffiffiffiffi
ðk2�4lÞ
p

2
ðnþ kÞ

� �
� k

2l

0
BB@

1
CCA; ð2:6Þ

UðnÞ ¼ ln

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2 � 4lÞ

q
coth

ffiffiffiffiffiffiffiffiffiffiffiffi
ðk2�4lÞ
p

2
ðnþ kÞ
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2l
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When k2 � 4l < 0, l „ 0,

UðnÞ ¼ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4l� k2Þ

q
tan

ffiffiffiffiffiffiffiffiffiffiffiffi
ð4l�k2Þ
p

2
ðnþ kÞ
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� k

2l
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1
CCA; ð2:8Þ

UðnÞ ¼ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4l� k2Þ

q
cot

ffiffiffiffiffiffiffiffiffiffiffiffi
ð4l�k2Þ
p

2
ðnþ kÞ

� �
� k

2l

0
BB@

1
CCA; ð2:9Þ

When k2 � 4l > 0, l = 0, k „ 0,

UðnÞ ¼ � ln
k

expðkðnþ kÞÞ � 1

� �
; ð2:10Þ

When k2 � 4l = 0, l „ 0, k „ 0,

UðnÞ ¼ ln � 2ðkðnþ kÞ þ 2Þ
k2ðnþ kÞÞ

� �
; ð2:11Þ

When k2 � 4l = 0, l = 0, k = 0,

UðnÞ ¼ lnðnþ kÞ; ð2:12Þ

where k is an arbitrary constant and an, . . . . . . , x, k, l are con-

stants to be determined later, an „ 0, the positive integer n can
be determined by considering the homogeneous balance
between the highest order derivatives and the nonlinear terms

appearing in Eq. (2.3).
Step 3. We substitute Eq. (2.4) into (2.3) and then we
account the function exp(�U(n)). As a result of this substi-
tution, we get a polynomial of exp(�U(n)). We equate all

the coefficients of same power of exp(�U(n)) to zero. This
procedure yields a system of algebraic equations whichever
can be solved to find an, . . . . . . , x, k, l. Substituting the

values of an, . . . . . . , x, k, l into Eq. (2.4) along with gen-
eral solutions of Eq. (2.5) completes the determination of
the solution of Eq. (2.1).

3. Application

The Kadomtsev–Petviashvili (KP) equation

uxt � 6uuxx � 6ðuxÞ2 þ uxxxx þ 3d2uyy ¼ 0; ð3:1Þ

or ðut � 6uux þ uxxxÞx þ 3d2uyy ¼ 0;

is a two-dimensional generalization of the KdV equation.

Kadomtsev and Petviashivili (1970) first introduced this equa-
tion to describe slowly varying nonlinear waves in a dispersive
medium [17,18]. Eq. (3.1) with d2 = +1 arises in the study of

weakly nonlinear dispersive waves in plasmas and also in the
modulation of weakly nonlinear long water waves [19] which
travel nearly in one dimension (that is, nearly in a vertical

plane). The equation with d2 = �1 arises in acoustics and
admits unstable soliton solutions, whereas for d2 =+1 the
solitons are stable.

The traveling wave transformation equation is

u ¼ uðx; y; tÞ; n ¼ xþ y� xt; u ¼ uðnÞ; uðx; y; tÞ ¼ uðnÞ:
ð3:2Þ

Using traveling wave Eq. (3.2), Eq. (3.1) reduces into the fol-

lowing ODE

ð�xu0 � 6uu0 þ u000Þ0 þ 3d2u00 ¼ 0: ð3:3Þ

Integrating Eq. (3.3) twice with respect to n setting constant of
integration to zero, we obtain the following ODE

u00 þ ð3d2 � xÞu� 3u2 ¼ 0: ð3:4Þ
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