
ORIGINAL ARTICLE

The approximation of common element

for maximal monotone operator, generalized

mixed equilibrium problem and fixed point problem

Jingling Zhang, Yongfu Su *, Qingqing Cheng

Department of Mathematics, Tianjin Polytechnic University, Tianjin 300387, PR China

Received 30 August 2013; revised 4 March 2014; accepted 6 May 2014
Available online 27 June 2014

KEYWORDS

Relatively quasi-nonexpan-

sive mapping;

Generalized f-projection;

Uniformly closed;

Strong convergence

Abstract The purpose of this paper is to get strong convergence theorems for a countable family of

relatively quasi-nonexpansive mappings fSng1n¼0, a maximal monotone operator T, and a general-

ized mixed equilibrium problem in a uniformly smooth and uniformly convex Banach space lacking

condition UARC. Two examples are given to support our results. One is a countable family of

uniformly closed relatively quasi-nonexpansive mappings but not a countable family of relatively

nonexpansive mappings. Another is uniformly closed but not satisfies condition UARC. Many

recent results in this field have been unified and improved.

2010 MATHEMATICS SUBJECT CLASSIFICATION: 47H05; 47H09; 47H10

ª 2014 Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society.

1. Introduction

In an infinite-dimensional Hilbert space, Mann iterative

algorithm has only weak covergence, in general, even for non-
expansive mappings. Hence in order to have strong conver-
gence, in recent years, the hybrid iteration methods for
approximating fixed points of nonlinear mappings have been

introduced and studied by various authors [1–6].

Let E be a smooth Banach space. We denote by / the
functional on E� E defined by

/ðx; yÞ ¼ kxk2 � 2hx; JðyÞi þ kyk2; 8 x; y 2 E:

A point p 2 C is said to be an (strong) asymptotic fixed point
of T if there exists a sequence fxng1n¼0 � C such that (xn ! p)

xn * p and limn!1kxn � Txnk ¼ 0. The set of (strong) asymp-
totic fixed point is denoted by ( eFðTÞ) bFðTÞ. Let E be a smooth
Banach space, we say that a mapping T is (weak) relatively

nonexpansive (see [7–11]) if the following conditions are
satisfied:

(i) F ðT Þ–;;
(ii) /ðp; TxÞ 6 /ðp; xÞ; 8x 2 C; p 2 F ðT Þ;
(iii) (F ðT Þ ¼ eF ðT Þ) F ðT Þ ¼ bF ðT Þ.
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A multivalued operator T : E! 2E
�
with domain DðTÞ ¼

fz 2 E : Tz–;g is called monotone if hx1 � x2; y1 � y2iP 0
for each xi 2 DðTÞ and yi 2 Txi; i ¼ 1; 2. A monotone operator

T is called maximal if its graph GðTÞ ¼ fðx; yÞ : y 2 Txg is not
properly contained in the graph of any other monotone oper-
ator. A method for solving the inclusion 0 2 Tx is the proximal

point algorithm. This algorithm was first presented by
Martinet [12] and generally studied by Rockafellar [13] in a
Hilbert space. A mapping A : C! E� is called a-inverse-
strongly monotone, if there exists an a > 0 such that

hAx� Ay; x� yiP akAx� Ayk2; 8x; y 2 C.
It is easy to see that if A : C! E� is an a-inverse-strongly

monotone mapping, then it is 1=a-Lipschitzian. Let

T : E! 2E
�
be a maximal monotone operator in a smooth

Banach space E. We denote the resolvent of T by
Jr :¼ ðJþ rTÞ�1J for each r > 0. Then Jr : E! DðTÞ is a sin-

gle-valued mapping. Also, T�10 ¼ FðJrÞ for each r > 0, where
FðJrÞ is the set of fixed points of Jr. For each r > 0, the Yosida
approximation of T is defined by Ar ¼ ðJ� JJrÞ=r. It is known
that

Arx 2 TðJrxÞ; 8r > 0 and x 2 E:

Let u : C! R be a real-valued function and A : C! E� be
a nonlinear mapping and f : C� C! R be a bifunction. For
solving the equilibrium problem, let us assume that the bifunc-

tion f satisfies the following conditions:

(A1) f ðx; xÞ ¼ 0 for all x 2 C;

(A2) f is monotone, i.e., f ðx; yÞ þ f ðy; xÞ � 0 for all x; y 2 C;
(A3) for each x; y 2 C; limt!0f ðtzþ ð1� tÞx; yÞ 6 f ðx; yÞ;
(A4) for each x 2 C; y#f ðx; yÞ is convex and lower semi-

continuous.

The generalized mixed equilibrium problem is to find u 2 C

[14–16] such that:

fðu; yÞ þ uðyÞ � uðuÞ þ hAu; y� uiP 0; 8 y 2 C: ð1:7Þ

Throughout this paper, we denote fðu; yÞ þ uðyÞ � uðuÞþ
hAu; y� ui by Fðx; yÞ. The set of solutions of (1.7) is denoted
by GMEPðF;uÞ, i.e.,

GMEPðF;uÞ ¼ fu 2 C : fðu; yÞ þ uðyÞ � uðuÞ þ hAu; y� ui
P 0; 8 y 2 Cg:

If A ¼ 0, then problem (1.7) is equivalent to mixed equilibrium

problem studied by many authors, which is to find u 2 C such
that

fðu; yÞ þ uðyÞ � uðuÞP 0; 8 y 2 C:

If u ¼ 0, then problem (1.7) is equivalent to generalized equi-

librium problem considered by many authors, which is to find
u 2 C such that

fðu; yÞ þ hAu; y� uiP 0; 8 y 2 C:

If u ¼ 0;A ¼ 0, then problem (1.7) is reduces to equilibrium
problem considered by many authors, which is to find u 2 C

such that fðu; yÞP 0; 8y 2 C.
The generalized mixed equilibrium problem includes fixed

point problem, optimization problem, variational inequality

problem, minimax problem, Nash equilibrium problem as spa-
cial cases [17]. Some methods have been proposed to find its
solutions. And, numerous problems in physics, optimation

and economics can be reduced to find a solution of generalized
equilibrium problem [18].

Algorithms for obtaining fixed point of relatively nonex-

pansive mappings have been studied widely. For instance,
Mann iterative method, Ishikawa-type iterative method, Halp-
ern-type iterative method, hybrid methods, and many other

modified methods. Recently, utilizing Nakajo and Takahashi’s
idea [19], Qin and Su [20] introduced one iterative algorithm
for a relatively nonexpansive mapping. By combining Kamim-

ura and Takahashi’s idea [21] with Qin and Su [20], Ceng et al.
[22] introduced a hybrid proximal-type algorithm for finding
an element of fixed point set and zero point set in a uniformly
smooth and uniformly convex Banach space. In 2011, Ceng

et al. [23] introduced and investigated one hybrid shrinking
projection method for a generalized equilibrium problem, a
maximal monotone operator and a countable family of rela-

tively nonexpansive mappings. The authors obtained strong
convergence theorems.

2. Preliminaries and lemmas

Let E be a smooth, strictly convex and reflexive real Banach
space and let C be a nonempty closed convex subset of E. It

is well known that the generalized projection PC from E onto
C is defined by

PCðxÞ ¼ argmin
y2C

/ðy; xÞ; 8 x 2 E:

The existence and uniqueness of PC follows from the property
of the functional /ðx; yÞ and strict monotonicity of the map-
ping J. And it is obvious that

ðkxk � kykÞ2 6 /ðx; yÞ 6 ðkxk þ kykÞ2; 8 x; y 2 E:

Next, we recall the notion of generalized f-projection
operator and its properties. Let G : C� E� ! R [ fþ1g be
a functional defined as following:

Gðn;uÞ ¼ knk2 � 2hn;ui þ kuk2 þ 2qfðnÞ; ð2:1Þ

where n 2 C;u 2 E�; q is a positive number and
f : C! R [ fþ1g is proper, convex and lower semi-continu-

ous. From the definitions of G and f, it is easy to see the follow-
ing properties:

(i) Gðn;uÞ is convex and continuous with respect to u when
n is fixed.

(ii) Gðn;uÞ is convex and lower semi-continuous relate to n
when u is fixed.

We can see that the functional G is a generalization of func-

tional /. That is, functional / is a special case of functional G
when f � 0.

Definition 2.1 [24]. Let E be a real Banach space with its dual
E�. Let C be a nonempty, closed and convex subset of E. We

say that Pf
C : E� ! 2C is a generalized f-projection operator if

for any u 2 E�,

Pf
Cu ¼ fu 2 C : Gðu;uÞ ¼ inf

n2C
Gðn;uÞg:

For the generalized f-projection operator, Wu and Huang
[20] proved the following basic properties:
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