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We study the two analytical methods, the classical method of successive approxima-
tions (Picard method), Adomian decomposition method (ADM) see (Abbaoui and Cherruault, 1994;
Adomian et al., 1992; Adomian, 1995) [1-3] and the (numerical method) predictor corrector method
(PECE) for an initial value problem of arbitrary (fractional) orders differential equation (FDE). The
existence and uniqueness of the solution will be proved and the convergence will be discussed for each
method. Some examples will be studied.
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1. Introduction

Let o € [0, 1). In this paper, we study the existence and unique-
ness of the solution of the initial value problem

% + D% (1) = f(t,x()), O0<a<l, (1)
x(0) = X. (2)
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We apply the three methods Adomian, Picard and predictor—
corrector to obtain numerical solution of the problem (1) and
(2).

Now, the definition of the fractional-order integral and dif-
ferential operators are given by the following.

Definition 1. Let 8 be a positive real number, the fractional-
order integral of order $ of th function f is defined on the in-
terval [0, T'] by

t _ 8-l
I = /0 %f(s)ds

and the fractional-order derivative of the function f € C'[0, T']
of order « € (0, 1] is defined by

o £ _ lfag
DSy =1

S1110-256X(15)00008-5 Copyright 2015, Egyptian Mathematical Society. Production and hosting by Elsevier B.V. All rights reserved

http://dx.doi.org/10.1016/j.joems.2015.01.001


http://dx.doi.org/10.1016/j.joems.2015.01.001
http://www.etms-eg.org
http://www.elsevier.com/locate/joems
http://crossmark.crossref.org/dialog/?doi=10.1016/j.joems.2015.01.001&domain=pdf
mailto:3adel@live.nl
mailto:rony_695@yahoo.com
http://dx.doi.org/10.1016/j.joems.2015.01.001

166

A.S. Mohamed, R.A. Mahmoud

2. Uniqueness theorem

Now, the initial value problem (1) and (2) will be investigated
under the following assumptions:

(1) f:J=1[0,T] x D— Riscontinuous where D is a closed
subset of R;
(i) f satisfies the Lipschitz condition with Lipschitz con-
stant L
ie
If(t,x) = f@, | < Lix—yl, Y x),ty) elxD.
Let C = C(J) be the space of all real-valued functions which
are continuous on J.

Definition 2. By a solution of the problem (1) and (2) we mean a
function x € C[0, T']. This function satisfies the problem (1) and
2).

Let x(¢) be a solution of the initial value problem (1) and (2).
Integrating (1) we obtain

x(t) = X4+ 1"(x(1) = %) = 1/(t, x),

then we have

x(t) = >2<1 + %) - 0, %x(s)ds
+‘/(;If(s, x(s))ds. 3)
Now let x € C(J) be a solution of the integral Eq. (3), then
% — 045 % % fﬁ’(%ﬂxmds
s / (s, x(5))ds = xmw ;
_)zl"(lti—aa) _ llfad—’t )

and

dx " s
oy TDx0) =1, x0)

. tlfoc t (f _S)—at
T x(l * rae —a)>r=0 - (/0 rd- Ol)X(S)ds>t=o
'
+</ f(S,X(S))dS)
0 =0

then the problem (1) and (2) and the integral Eq. (3) are equiv-
alent.

Comparison between analytical methods is studied in many
papers, for examples [4-7].

Define the operator F as

I—a 3 t (t _S)—a
rQ2-—a) , T(1—a)

t
+/ S, x(s)ds, «a>0, VxeC.
0

(Fx)(t) = )?(1 + x(s)ds

Theorem 1. Let the assumptions (i)—(ii) be satisfied if LT +
% < 1, then the initial value problem (1) has a unique solu-
tion x € C.

Proof. Firstly we prove that F' : C — C is continuous.

letxe C(J), t;, t, € Jsuchthat|t, — ;]| <&
Fx(ty) — Fx(fy) = % I ULl x(s)ds
’ YTre—a) )y Td-oa)

ll—a
INEE))
x(s)ds —/ f (s, x(s))ds

+/2f(s,x(s))ds—i
(h —S)
+ Tas

o _ e 0oty — )
|[Fx(t) — Fx(t))] < |x|| ra= l) | —/0 (I‘z(l _S)a) |x(s)|ds

+/” M|X(J)|d$‘+/t2 |/ (s, x(s))lds
o T(l—a) tl '

|Fx(t2) — Fx(t)| = nglef:lXIFX(lz) — Fx(1)]
—l‘l a 1 (l‘ —S) o
_||x\\71—|| u/ 2
rQ-— T -—a)
+lx ||/t' b = d —|—k/ ds
1"(1 ;
‘-1 “I
=< HXHW
X
F(! I |t2*“—t11*"|+k|t2—tl|
x|+ || x
< wh — 47|+ klty — 11l <e
where

Lf (. x@)] <k,

This proves that F : C[0, T] — C[0, T
Now we prove that F is contraction, for this we have

Fx—Fy=— | ﬁ(;_)i)x(s)ds-l—/ f(s, x(s))ds
U= s - f 75, 9(s))ds
) T —a)
Fx—Fy < [ U9 e be(e) =y
=)y ra- DN
+ / 1/ (5. %)) — /(5. y(s))lds
)
= [t Ko-y@ids + L | () = y(o)lds
) T(I—
( — 5
< llx—=l : deLTIIx—yII

T]—a
Fx—Fy| <|x-— LT + ———|.
1Fx—Fyll < [lx yll( +F(2—a)>
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