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Considering different parameters and by means of Hadamard’s inequality, we obtain
new and more general half-discrete Hilbert-type inequalities. Then we extract from our results some
special cases that have been proved previously by other authors.
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1. Introduction

We study advanced variants of the following classical discrete
Hilbert-type inequality [1]: if @,,, b, > 0,0 < Y0, @, < oo and
0 <Y, b’ < oo, then we have
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where % + 5 = 1. Inequality (1) has the following integral anal-
ogous:

/00 OC f(x)g(y)dxdy
o Jo X+y
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< — </ fp(x)dx> </ g”(x)dx) , 2)
sin(r /p) \Jo 0

unless f(x) = 0 or g(x) = 0, where p > 1, g = p/(p —1). The
constant Si“(”w, in (1) and (2), is the best possible, see [1].
Inequalities (1) and (2), which have many generalizations see
for example [2,3] and references therein, with their improve-
ments have played fundamental roles in the development of
many mathematical branches, see for instance [2,4,5] and ref-
erences therein. A few results on the half-discrete Hilbert-type
inequalities with non-homogeneous kernel can be found in [6].
Recently [7-10] gave some new half-discrete Hilbert-type in-
equalities. For example in [8] we find the following inequality
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with a non-homogeneous kernel: if 0 < [;° /?(x)dx < oo and
0 <Y a < oo, then

n=1%n
~ - 1/2
2 2
n(Za / I <x>> , 3)

where the constant 7 is the best possible. Then in [10], by using
the way of weight coefficients and the idea of introducing pa-
rameters and by means of Hadamard’s inequality, the authors
gave the following more accurate inequality of (3):

ia &d x<m 3 aszfz(x) - 4)
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Inequalities (3) and (4) have many generalizations concern-
ing the denominator of the left hand side, see for example
[11-14].

Our main goal is to obtain a new generalization of the half-
discrete Hilbert-type inequality (3). Before proving the main
theorem of this paper, Theorem 2.1, let us state and prove the
following lemma.

Lemma 1.1. For0 <b <x <c, o, r,a € (0, 1], with o > r, A
€ (0, 00), and A = &, + A, with iz >p(¢—1)> %—ldeﬁne

Ma 1
w(n) = n*? / (x“—{-nr)'\ ®)
and
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w(x) = x* ; 7()(& e (6)
Then

Ao (a—r)
w(n) = (B(A1, A2) — W(n)), (7
and
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where W(n) = Iy (lim* du + [ (Ij—‘mdu, and B(€, ¢) is the
B—function with & = — pra(5 — 1) and & = ry + pro(% —
).

Proof. Puttingu = % in (5) gives
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Use the definition of the Beta function (B(6, y)

fOOO Wdz) in the first integral and the substitution u = - 1n

the third integral to have
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as stated in (7).
In order to prove (8), for fixed x € (b, ¢), putting
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> 0.
Therefore, by Hadamard’s inequality

1
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and (6) we obtain
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Letting u = %
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in the above inequality leads to

This proves (8). O

In the following section we state the main result of this paper
of which many special cases can be obtained.

2. Main results and discussion

In this section we state and discuss our main theorem together
with its special cases. For three different parameters «,r, A we
have the following result.
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