

Original Article

Egyptian Mathematical Society

Journal of the Egyptian Mathematical Society

www.etms-eg.org www.elsevier.com/locate/joems

Applications of the differential operator to a class of meromorphic univalent functions

Khalida Inayat Noor^a, Qazi Zahoor Ahmad^{a,1}, Janusz Sokół^{b,*}

 ^a Department of Mathematics, COMSATS Institute of Information Technology, Park Road, Islamabad, Pakistan
 ^b Department of Mathematics, Rzeszów University of Technology, Al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland

R 110 F1 0015 1144

Received 19 February 2015; accepted 4 April 2015 Available online 16 May 2015

Keywords

Meromorphic functions; Close-to-convex functions; Convolution; Differential operator; Inclusion results **Abstract** In this paper, we define a new subclass of meromorphic close-to-convex univalent functions defined in the punctured open unit disc by using a differential operator. Some inclusion results, convolution properties and several other properties of this class are studied.

1991 Mathematics Subject Classification: 30C45; 30C50

Copyright 2015, Egyptian Mathematical Society. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Let Σ denote the class of functions of the form

$$f(z) = \frac{1}{z} + \sum_{k=0}^{\infty} a_k z^k,$$
(1.1)

Peer review under responsibility of Egyptian Mathematical Society.

which are analytic and univalent in $E^* = \{z : 0 < |z| < 1\} = E\{0\}$. For the functions

$$f(z) = \frac{1}{z} + \sum_{k=0}^{\infty} a_k z^k$$
 and $g(z) = \frac{1}{z} + \sum_{k=0}^{\infty} b_k z^k$, $z \in E^*$.

analytic in E^* , their Hadamard product or convolution, f * g, is the function defined by

$$(f * g)(z) = \frac{1}{z} + \sum_{k=0}^{\infty} a_k b_k z^k, \quad z \in E^*,$$

where (*) stands for convolution sign.

The theory of linear operators plays an important role in geometric function theory. Several differential and integral operators were introduced and studied, see for example [1,3,16,21,22,25,27]. For the recent work on linear operators for

S1110-256X(15)00028-0 Copyright 2015, Egyptian Mathematical Society. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). http://dx.doi.org/10.1016/j.joems.2015.04.001

^{*} Corresponding author.

E-mail addresses: khalidanoor@hotmail.com (K.I. Noor), zahoorqazi5@gmail.com (Q.Z. Ahmad), jsokol@prz.edu.pl (J. Sokół). ¹ Current address.

meromorphic functions, we refer to [4,6,10,11]. In this work we consider the operator defined by El-Ashwah [10] and El-Ashwah and Aouf [11,12]. For λ real, l > 0 and $n \in \mathbb{N}_0 = \mathbb{N} \cup$ {0}, the linear operator $D^n(\lambda, l) : \Sigma \to \Sigma$ was defined by

$$D^{n}f(z) = \frac{1}{z} + \sum_{k=0}^{\infty} \left[\frac{l + \lambda(k+1)}{l} \right]^{n} a_{k} z^{k}, \quad z \in E^{*}.$$
 (1.2)

Clearly $D^0 f(z) = f(z)$ and $D^1(1,1)f(z) = 2f(z)) + zf'(z)$. It is noted that

$$\lambda z (D^n f(z))^{n+1} f(z) - (\lambda + l) D^n f(z), \quad z \in E^*.$$
(1.3)

For $\lambda = 1$, the operator $D^n(1,l) f(z)$ was introduced and studied by Cho et al. [7,8]. The case $D^n(\lambda,1) f(z)$ was considered by Al-Oboudi and Al-Zkeri [2]. Further the operators $D^n(1,1) f(z)$ and $D^1(-1,1) f(z)$ were investigated by Uralegaddi and Somanatha [27] and Noor and Ahmad [23] respectively.

For α , $(0 \le \alpha < 1)$, a function $f(z) \in \Sigma$ is said to be meromorphic starlike and convex of order α if it satisfies

$$-\Re e\left\{\frac{zf'(z)}{f(z)}\right\} > \alpha, \quad z \in E,$$

and

$$-\Re e \Biggl\{ \frac{\left(zf'(z) \right)'}{f'(z)} \Biggr\} > \alpha, \quad z \in E,$$

respectively. We denote the former class of functions as $\Sigma^*(\alpha)$ and the later one by $\Sigma^k(\alpha)$. These classes have been studied by Pommerenke [24], Clunie [9] and Miller [19,20]. Further a function $f(z) \in \Sigma$ is said to be from the class $\Sigma^c(\alpha)$, if it satisfies

$$-\Re e\left\{z^2 f'(z)\right\} > \alpha, \quad z \in E.$$

$$(1.4)$$

This class was investigated by Ganigi and Uralegaddi [14], Cho and Owa [5] and Wang and Guo [28].

Definition 1. A function *f* given by (1.1) is said to belong to the class $\Sigma^{g}(\alpha)$ of meromorphic close-to-convex functions if there exists a function $g \in \Sigma^{*}(\alpha)$ such that

$$-\Re e\left\{\frac{zf'(z)}{g(z)}\right\} > 0, \quad z \in E.$$

This class of functions was introduced and studied by Libera and Robertson [17].

Remark 1. In [14] it was shown that if a function $f(z) \in \Sigma^{c}(\alpha)$, then it is meromorphic close-to-convex of order α .

Let f and g be two analytic functions in E. We say that f is subordinate to g, written $f \prec g$, if there exists a Schwarz function w(z), analytic in E with w(0) = 0 and |w(z)| < 1 such that f(z) = g(w(z)). If g is univalent in E, then $f \prec g$ is equivalent to f(0) = g(0) and $f(E) \subset g(E)$.

A sequence of non-negative numbers $\{c_n\}$ is said to be a convex null sequence if $c_k \to 0$ as $k \to \infty$ and

$$c_0-c_1\geq c_1-c_2\geq \cdots \geq c_k-c_{k+1}\geq \cdots \geq 0.$$

Now we define the following class of functions by using the operator defined in (1.2).

Definition 2. A function $f(z) \in \Sigma$ is said to be in the class $\Sigma^n(\lambda, \alpha)$, if and only if

$$-\Re e\left\{z^2 \left(D^n f(z)\right)'\right\} > \alpha, \quad z \in E, \quad (n \in \mathbb{N}_0).$$

When n = 0, we obtain the class $\Sigma^{c}(\alpha)$ of meromorphic functions, which was studied by Ganigi and Uralegaddi [14], Cho and Owa [5] and Wang and Guo [28].

2. Preliminary results

We need the following results.

Lemma 1 [26]. If p(z) is analytic in E with p(0) = 1 and $\Re\{p(z)\} > 1/2, z \in E$, then for any analytic function F, in E, the function P * F takes its values in the convex hull of F(E).

Lemma 2 [13]. Let $\{c_k\}_{k=0}^{\infty}$ be a convex null sequence. Then the function

$$p(z) = \frac{c_0}{2} + \sum_{k=1}^{\infty} c_k z^k, \quad z \in E,$$

is analytic and $\Re e\{p(z)\} > 0$ *in E.*

The following result is due to Hallenbeck and Ruscheweyh.

Lemma 3 [15]. Let the function h(z) be convex univalent in E with

$$h(0) = 1, \quad \gamma \neq 0 \quad \text{and} \quad \Re e \gamma > 0, \quad z \in E$$

Suppose that the function

$$p(z) = 1 + p_1 z + p_2 z^2 + \cdots,$$

is analytic in E and satisfying the following differential subordination

$$p(z) + \frac{zp'(z)}{\gamma} \prec h(z), \quad z \in E_{\gamma}$$

then

$$p(z) \prec q(z) \prec h(z), \quad z \in E$$

where

$$q(z) = \frac{\gamma}{z^{\gamma}} \int_0^z h(t) t^{\gamma - 1} \mathrm{d}t$$

The function q(z) *is convex and is the best dominant.*

Lemma 4 [18]. Let q(z) be a convex function in E and let

$$h(z) = q(z) + \beta z q'(z)$$

where $\beta > 0$. If p(z) is analytic and satisfies

$$p(z) + \beta z p'(z) \prec h(z), \quad z \in E,$$

Download English Version:

https://daneshyari.com/en/article/483493

Download Persian Version:

https://daneshyari.com/article/483493

Daneshyari.com