
Journal of the Egyptian Mathematical Society (2016) 24 , 210–213 

Egyptian Mathematical Society 

Journal of the Egyptian Mathematical Society 

www.etms-eg.org 
www.elsevier.com/locate/joems 

Original Article 

New stability and boundedness results to Volterra 

integro-differential equations with delay 

Cemil Tunç∗

Department of Mathematics, Faculty of Sciences, Yüzüncü Yıl University, 65080 Van, Turkey 

Received 1 June 2015; accepted 13 August 2015 
Available online 9 September 2015 

Keywords 

Non-linear; 
Volterra integro- 
differential equation; 
Stability; 
Boundedness; 
Lyapunov functional 

Abstract In this paper, we consider a certain non-linear Volterra integro-differential equations 
with delay. We study stability and boundedness of solutions. The technique of proof involves defining 
suitable Lyapunov functionals. Our results improve and extend the results obtained in literature. 
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1. Introduction 

In the last years, the qualitative properties of Volterra integro- 
differential equations without delay have been discussed by 
many researches. In particular, the reader can referee to the pa- 
pers of Becker [1] , Burton [2,3] , Burton and Mahfoud [4,5] Dia- 
mandescu [6] , Hara et al. [7] , Miller [8] , Staffans [9] , Tunc [10] , 
Vanualailai and Nakagiri [11] and the books of Burton [12] , 
Corduneanu [13] , Gripenberg et al. [14] and the references cited 

therein for some works done on qualitative properties of var- 
ious Volterra integro-differential equations without delay. An 
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important tool to discuss the qualitative properties of solutions 
of ordinary and functional differential equations and integro- 
differential equations is the Lyapunov’s direct method. Theo- 
retically this method is very appealing, and there are numerous 
applications where it is natural to use it. The key requirement of 
the method is to find a positive definite function or functional 
which is non-increasing along solutions. 

However, it is a quite difficult task to find a suitable Lya- 
punov function or functional for a non-linear ordinary or func- 
tional differential equation and a non-linear functional Volterra 
integro- differential equation. The situation becomes more dif- 
ficult when we replace an ordinary or a functional differential 
equation with a functional integro-differential equation. By this 
time, the construction of Lyapunov functions and functionals 
for non-linear differential and integro-differential systems re- 
mains as an open problem in the literature. Besides, in the lit- 
erature, there are a few papers on the qualitative behaviors of 
Volterra integro-differential equations with delay. See, for ex- 
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ample, the recent papers of Adıvar and Raffoul [15] , Graef and 

Tunc [16] , Raffoul [17] and Raffoul and Unal [18] . 
In 2003, Vanualailai and Nakagiri [11] considered the non- 

linear Volterra integro-differential equation without delay, 

d 
dt 

[ x (t)] = A (t ) f (x (t )) + 

∫ t 

0 
B(t, s ) g(x (s )) ds , (1) 

where t ≥ 0 , x ∈ � , A (t) : [0 , ∞ ) → (−∞ , 0) , f , g : � → � are 
continuous functions, and B(t, s ) is a continuous function for 
0 ≤ s ≤ t < ∞ . Vanualailai and Nakagiri [11] studied the sta- 
bility of solutions of Eq. (1) by defining a suitable Lyapunov 
functional. 

In this paper, we consider the nonlinear the Volterra integro- 
differential equation with delay 

x 

′ (t) = −a (t ) f (x (t )) + 

∫ t 

t−τ

B(t, s ) g(x (s )) ds + p(t) , (2) 

where t ≥ 0 , τ is a positive constant, fixed delay, x ∈ � , a (t) : 
[0 , ∞ ) → (0 , ∞ ) , p : [0 , ∞ ) → � , f , g : � → � are continu- 
ous functions with f (0) = g(0) = 0 , and B(t, s ) is a continuous 
function for 0 ≤ s ≤ t < ∞ . 

We investigate the stability of zero solution and boundedness 
of all solutions of Eq. (2) by defining new suitable Lyapunov 
functionals, when p(t) ≡ 0 and p(t) � = 0 , respectively. 

It follows that Vanualailai and Nakagiri [11] considered a 
Volterra integro-differential equation without delay. However, 
in this paper, we consider a Volterra integero-differential equa- 
tion with delay. Besides, Vanualailai and Nakagiri [11] discussed 

the stability of the zero solution of Eq. (1) . However, beside the 
stability of zero solution, we also discuss the boundedness of 
solutions of Eq. (2) , when p(t) ≡ 0 and p(t) � = 0 , respectively. 
Further, Eq. (2) includes and extends the equations discussed 

by Vanualailai and Nakagiri [11] , when τ = 0 . 
We give some basic information related Eq. (2) . 
We use the following notation throughout this paper. 
For any t 0 ≥ 0 and initial function ϕ ∈ [ t 0 − τ, t 0 ] , let x (t) = 

x (t , t 0 , ϕ ) denote the solution of Eq. (2) on [ t 0 − τ, ∞ ) such that 
x (t) = ϕ(t) on ϕ ∈ [ t 0 − τ, t 0 ] . 

Let C[ t 0 , t 1 ] and C[ t 0 , ∞ ) denote the set of all continuous 
real-valued functions on [ t 0 , t 1 ] and [ t 0 , ∞ ) , respectively. 

For ϕ ∈ C[0 , t 0 ] , | ϕ| t 0 := sup {| ϕ (t ) | : 0 ≤ t ≤ t 0 } . 
Definition. The zero solution of Eq. (2) is stable if for each 

ε > 0 and each t 0 ≥ 0 , there exists a δ = δ(ε, t 0 ) > 0 such that 
ϕ ∈ C[0 , t 0 ] with | ϕ (t ) | t 0 < δ implies that | x (t , t 0 , ϕ ) | < ε for all 
t ≥ t 0 . 

Let p(t) = 0 in Eq. (1) . 
The following theorem is need for the stability result of this 

theorem. 

Theorem 1 (Driver [19] ) . If there exists a functional V (t , ϕ (. )) , 

defined whenever t ≥ t 0 ≥ 0 and ϕ ∈ C([0 , t] , � ) , such that 

(i) V (t, 0) ≡ 0 , V is continuous in t and locally Lipschitz in ϕ, 

(ii) V (t , ϕ (. )) ≥ W (| ϕ (t ) | ) , W : [0 , ∞ ) → [0 , ∞ ) is a contin- 
uous function with W (0) = 0 , W (r ) > 0 if r > 0 , and W 

strictly increasing (positive definiteness), and 
(iii) V 

′ (t , ϕ (. )) ≤ 0 , 

then the zero solution of Eq. (2) is stable, and 

V (t , ϕ (. )) = V (t , ϕ (s ) : 0 ≤ s ≤ t) 

is called a Lyapunov functional for Eq. (2) . 

2. The main results 

We state some assumptions on the functions that are appearing 
in Eq. (2) . 

A. Assumptions 

(A1) There exist positive constants α, m, J, M and N such that 

f (0) = 0 , g(0) = 0 , g 2 (x ) ≤ m 

2 f 2 (x ) if | x | ≤ M, 

α > 4 such that 4 x 

2 ≤ (α − 4) f 2 (x ) if | x | ≤ N. 

(A2) a (t) > 0 for t ≥ 0 , B(t, s ) is continuous for 0 ≤ s ≤ t < 

∞ , 

J ≥ 1 , 1 
4 a (t) 

∫ t 
t−τ

| B(t, s ) | ds < 

1 
J for every t ≥ s − τ ≥ 0 , ∫ ∞ 

t−τ
| B(u + τ, s ) | du is defined and continuous for 0 ≤ s −

τ ≤ t < ∞ . 

a (t) − k 

∫ ∞ 

t−τ
| B(u + τ, t) | du ≥ 0 for every t ≥ s − τ ≥ 0 . 

For the case p(t) = 0 in Eq. (2) , we have the following result. 

Theorem 2. Assume conditions ( A 1) and ( A 2) hold. If k = 

m 

2 (1+ α) 

J , then the zero solution of Eq. (2) is stable. 

Proof. We introduce a functional V 0 = V 0 (t) = V 0 (t, x (t)) de- 
fined by 

V 0 = 

1 
2 

x 

2 + 

√ 

α

∫ x 

0 

√ 

f (u ) u du + 

1 
2 
α

∫ x 

0 
f (u ) du 

+ k 

∫ t 

0 

∫ ∞ 

t−τ

| B(u + τ, s ) | du f 2 (x (s )) ds, (3) 

where k is a positive constant to be determined later in the 
proof. �

It is clear that the functional V 0 is positive definite. 
Differentiating the functional V 0 with respect to t, we obtain 

from ( 3 ) that 

V 

′ 
0 = xx 

′ + 

√ 

α
√ 

f (x ) x x 

′ + 

1 
2 
α f (x ) x 

′ 

+ k 

∫ ∞ 

t−τ

| B(u + τ, t) | du f 2 (x ) − k 

∫ t 

0 
| B(t, s ) | f 2 (x (s )) ds. 

(4) 

Then, it is clear that 

xx 

′ = −a (t) x f (x ) + x 

∫ t 

t−τ

B(t, s ) g(x (s )) ds 

= −a (t) x f (x ) −
[√ 

a (t) x − 1 

2 
√ 

a (t) 

∫ t 

t−τ

B(t, s ) g(x (s )) ds 
]2 

+ a (t) x 

2 + 

1 
4 a (t) 

[∫ t 

t−τ

B(t, s ) g(x (s )) ds 
]2 

≤ −a (t) x f (x ) + a (t) x 

2 + 

1 
4 a (t) 

[∫ t 

t−τ

B(t, s ) g(x (s )) ds 
]2 

≤ −a (t) x f (x ) + a (t) x 

2 

+ 

1 
4 a (t) 

∫ t 

t−τ

| B(t, s ) | ds 
∫ t 

t−τ

| B(t, s ) | g 2 (x (s )) ds 

≤ −a (t) x f (x ) + a (t) x 

2 
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