Original Article

On certain subclasses of analytic and bi-univalent functions

A.Y. Lashin*
Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt

Received 15 November 2014; revised 13 March 2015; accepted 25 April 2015
Available online 7 July 2015

KEYWORDS

Univalent functions; Bi-univalent functions; Starlike with respect to symmetric points

Abstract

In this paper, we introduced two interesting subclasses of the function class σ of analytic and bi-univalent functions in the open unit disk U. Estimates on the first two Taylor-Maclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions belonging to these classes are determined. Certain special cases are also indicated.

2010 MATHEMATICS SUBJECT CLASSIFICATION: 30C45; 30C55; 30C80
Copyright 2015, Egyptian Mathematical Society. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Let A denote the class of all functions of the form
$f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$,
which are analytic in the open unit disk $U=\{z: z \in \mathbb{C}$ and $|z|<1\}, \mathbb{C}$ being, as usual, the set of complex numbers. We also denote by S the subclass of all functions in A which are

* Corresponding author. Tel.: +20 502226165.

E-mail address: aylashin@mans.edu.eg, aylashin@yahoo.com
Peer review under responsibility of Egyptian Mathematical Society.

univalent in U. Let S_{s}^{*} be the subclass of S consisting of functions of the form (1.1) satisfying
$\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)-f(-z)}\right)>0, \quad z \in U$.
These functions are called starlike with respect to symmetric points and were introduced by Sakaguchi [1] (see also Robertson [2], Stankiewicz [3], Wu [4] and Owa et al. [5]). Das and Singh [6] introduced another class C_{s} namely, convex functions with respect to symmetric points and satisfying the condition
$\operatorname{Re}\left(\frac{\left(z f^{\prime}(z)\right)^{\prime}}{(f(z)-f(-z))^{\prime}}\right)>0, \quad z \in U$.
If f and g are analytic functions in U, we say that f is subordinate to g, written $f(z) \prec g(z)$ if there exists a Schwarz function φ, which (by definition) is analytic in U with $\varphi(0)=0$ and $|\varphi(z)|<1$ for all $z \in U$, such that $f(z)=g(\varphi(z)), z \in U$.

Furthermore, if the function g is univalent in U, then we have the following equivalence
$f(z) \prec g(z)(z \in U) \Leftrightarrow f(0)=g(0) \quad$ and $\quad f(U) \subset g(U)$.
For each $f \in S$, the Koebe one-quarter theorem [7] ensures the image of U under f contains a disk of radius $1 / 4$. Thus every univalent function $f \in S$ has an inverse f^{-1}, which is defined by
$f^{-1}(f(z))=z \quad(z \in U)$
and
$\left.f\left(f^{-1}(\omega)\right)=\omega \quad(|\omega|)<r_{0}(f) ; \quad r_{0}(f) \geq \frac{1}{4}\right)$.
In fact, the inverse function $g=f^{-1}$ is given by

$$
\begin{aligned}
g(\omega)= & f^{-1}(\omega)=w-a_{2} \omega^{2}+\left(2 a_{2}^{2}-a_{3}\right) \omega^{3} \\
& -\left(5 a_{2}^{2}-5 a_{2} a_{3}+a_{4}\right) \omega^{4}+\cdots .
\end{aligned}
$$

A function $f \in A$ is said to be bi-univalent in U if f and f^{-1} are univalent in U. Let σ denote the class of bi-univalent functions in U given by (1.1). The familiar Koebe function is not a member of σ because it maps the unit disk U univalently onto the entire complex plane minus a slit along the line $\frac{-1}{4}$ to $-\infty$. Hence the image domain does not contain the unit disk U.

In 1985 Branges [8] proved the celebrated Bieberbach Conjecture which states that, for each $f(z) \in S$ given by the TaylorMaclaurin series expansion (1.1), the following coefficient inequality holds true:
$\left|a_{n}\right| \leq n \quad(n \in N-\{1\})$,
N being the set of positive integers. The class of analytic biunivalent functions was first introduced and studied by Lewin [9], where it was proved that $\left|a_{2}\right|<1.51$. Subsequently, Brannan and Clunie [10] improved Lewin's result to $\left|a_{2}\right| \leq \sqrt{2}$. Brannan and Taha [11] and Taha [12] considered certain subclasses of bi-univalent functions, similar to the familiar subclasses of univalent functions consisting of strongly starlike and convex functions. They introduced bi-starlike functions and biconvex functions and found non-sharp estimates on the first two Taylor-Maclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$. For further historical account of functions in the class σ, see the work by Srivastava et al. [13] (see also [11,14]). In fact, the above-cited recent pioneering work of Srivastava et al. [13] has apparently revived the study of analytic and bi-univalent functions in recent years; it was followed by such works as those by Frasin and Aouf [15], Xu et al. [16,17], Hayami and Owa [18], and others (see, for example, [19-35]).

In the present paper, certain subclasses of the bi-univalent function class σ were introduced, and non-sharp estimates on the first two coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ were found.

2. Coefficient estimates

In the sequel, it is assumed that ϕ is an analytic function with positive real part in the unit disk U, satisfying $\phi(0)=1, \phi^{\prime}(0)>$

0 , and $\phi(U)$ is symmetric with respect to the real axis. Such a function has a Taylor series of the form
$\phi(z)=1+B_{1} z+B_{2} z^{2}+B_{3} z^{3}+\cdots\left(B_{1}>0\right)$.
Suppose that $u(z)$ and $v(z)$ are analytic in the unit disk U with $u(0)=v(0)=0,|u(z)|<1,|v(z)|<1$, and suppose that
$u(z)=b_{1} z+\sum_{n=2}^{\infty} b_{n} z^{n}, \quad v(z)=c_{1} z+\sum_{n=2}^{\infty} c_{n} z^{n} \quad(z \in U)$.
It is well known that (see Nehari [36, p. 172])

$$
\begin{equation*}
\left|b_{1}\right| \leq 1, \quad\left|b_{2}\right| \leq 1-\left|b_{1}\right|^{2}, \quad\left|c_{1}\right| \leq 1, \quad\left|c_{2}\right| \leq 1-\left|c_{1}\right|^{2} \tag{2.3}
\end{equation*}
$$

By a simple calculation, we have

$$
\begin{equation*}
\phi(u(z))=1+B_{1} b_{1} z+\left(B_{1} b_{2}+B_{2} b_{1}^{2}\right) z^{2}+\cdots(z \in U), \tag{2.4}
\end{equation*}
$$

and
$\phi(v(\omega))=1+B_{1} c_{1} \omega+\left(B_{1} c_{2}+B_{2} c_{1}^{2}\right) \omega^{2}+\cdots(\omega \in U)$.
Definition 1. A function $f \in \sigma$ given by (1.1) is said to be in the class $S_{\sigma}(\alpha, \phi)(0 \leq \alpha \leq 1)$ if the following conditions are satisfied:

$$
(1-\alpha) \frac{2 z f^{\prime}(z)}{f(z)-f(-z)}+\alpha \frac{2\left(z f^{\prime}(z)\right)^{\prime}}{(f(z)-f(-z))^{\prime}} \prec \phi(z)(z \in U)
$$

and
$(1-\alpha) \frac{2 \omega g^{\prime}(\omega)}{g(\omega)-g(-\omega)}+\alpha \frac{2\left(\omega g^{\prime}(\omega)\right)^{\prime}}{(g(\omega)-g(-\omega))^{\prime}} \prec \phi(\omega),(\omega \in U)$,
where $g(\omega):=f^{-1}(\omega)$.
Theorem 1. If $f(z)$ given by (1.1) be in the class $S_{\sigma}(\alpha, \phi)$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{B_{1} \sqrt{B_{1}}}{\sqrt{4(1+\alpha)^{2} B_{1}+2\left|(1+2 \alpha) B_{1}^{2}-2(1+\alpha)^{2} B_{2}\right|}} \tag{2.6}
\end{equation*}
$$

and
$\left|a_{3}\right| \leq \begin{cases}\frac{B_{1}}{2(1+2 \alpha)} & \text { if } B_{1} \leq \frac{2(1+\alpha)^{2}}{1+2 \alpha}, \\ \left(1-\frac{2(1+\alpha)^{2}}{(1+2 \alpha) B_{1}}\right)_{B_{1}^{3}} & \text { if } B_{1}>\frac{2(1+\alpha)^{2}}{1+2 \alpha} \\ \frac{B_{1}}{4(1+\alpha)^{2} B_{1}+2\left|(1+2 \alpha) B_{1}^{2}-2(1+\alpha)^{2} B_{2}\right|}+\frac{B_{1}}{2(1+2 \alpha)} . & \end{cases}$

Proof. Let $f \in S_{\sigma}(\alpha, \phi)$. Then there are analytic functions u, v : $U \rightarrow U$ given by (2.2) such that

$$
\begin{equation*}
(1-\alpha) \frac{2 z f^{\prime}(z)}{f(z)-f(-z)}+\alpha \frac{2\left(z f^{\prime}(z)\right)^{\prime}}{(f(z)-f(-z))^{\prime}}=\phi(u(z)) \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
(1-\alpha) \frac{2 \omega g^{\prime}(\omega)}{g(\omega)-g(-\omega)}+\alpha \frac{2\left(\omega g^{\prime}(\omega)\right)^{\prime}}{(g(\omega)-g(-\omega))^{\prime}}=\phi(v(\omega)) \tag{2.9}
\end{equation*}
$$

Since

https://daneshyari.com/en/article/483500

Download Persian Version:

https://daneshyari.com/article/483500

Daneshyari.com

