

Egyptian Mathematical Society

Journal of the Egyptian Mathematical Society

Original Article

Properties of certain subclass of *p*-valent meromorphic functions associated with certain linear operator

Rabha M. El-Ashwah ^a, Alaa H. Hassan ^{b,*}

Received 5 March 2015; revised 22 April 2015; accepted 2 May 2015 Available online 7 July 2015

Keywords

Meromorphic functions; P-valent functions; Differential subordination; Gauss hypergeometric function **Abstract** We investigate several inclusion relationships of certain subclass of *p*-valent meromorphic functions defined in the punctured unit disc, having a pole of order *p* at the origin. The subclass under investigation is defined by using certain linear operator defined by combining two integral operators.

2010 MATHEMATICAL SUBJECT CLASSIFICATION: 30C45; 30C80; 30D30

Copyright 2015, Egyptian Mathematical Society. Production and hosting by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Let Σ_p denotes the subclass of meromorphic functions of the form

$$f(z) = z^{-p} + \sum_{k=1-p}^{\infty} a_k z^k \quad (p \in \mathbb{N} := \{1, 2, 3, \ldots\}), \tag{1.1}$$

E-mail addresses: r_elashwah@yahoo.com (Rabha M. El-Ashwah), alaahassan1986@yahoo.com (Alaa H. Hassan).

Peer review under responsibility of Egyptian Mathematical Society.

Production and hosting by Elsevier

which are analytic in the punctured unit disc $U^* = U \setminus \{0\}$, where $U = \{z \in \mathbb{C}: |z| < 1\}$.

For two functions f(z) and g(z), analytic in U, we say that f(z) is subordinate to g(z) in U, written $f \prec g$ or $f(z) \prec g(z)$, if there exists a Schwarz function $\omega(z)$ which (by definition) is analytic in U, satisfying the following conditions (see [1,2]):

$$\omega(0) = 0$$
 and $|\omega(z)| < 1$; $(z \in U)$

such that

$$f(z) = g(\omega(z)); \quad (z \in U),$$

Indeed it is known that

$$f(z) \prec g(z) \quad (z \in U) \Longrightarrow f(0) = g(0) \text{ and } f(U) \subset g(U).$$

^a Department of Mathematics, Faculty of Science, Damietta University, New Damietta 34517, Egypt

^b Department of Mathematics, Faculty of Science, Zagazig University, Zagazig 44519, Egypt

^{*} Corresponding author. Tel.: +20 1066757776.

In particular, if the function g(z) is univalent in U, we have the following equivalence:

$$f(z) \prec g(z)$$
 $(z \in U) \iff f(0) = g(0)$ and $f(U) \subset g(U)$.

Following the recent work of El-Ashwah [3], for a function $f(z) \in \Sigma_p$, given by (1.1), also, for λ , $\ell > 0$ and $m \in \mathbb{N}_0(\mathbb{N}_0 = \mathbb{N} \cup \{0\})$, the integral operator $L_p^m(\lambda, \ell) : \Sigma_p \longrightarrow \Sigma_p$ is defined as follows:

$$L_{p}^{m}(\lambda, \ell) f(z) = \begin{cases} f(z); & (m = 0), \\ \frac{\ell}{\lambda} z^{-p - \frac{\ell}{\lambda}} \int_{0}^{z} t^{(\frac{\ell}{\lambda} + p - 1)} L_{p}^{m - 1}(\lambda, \ell) f(t) dt; & (m = 1, 2, ...). \end{cases}$$
(1.2)

Also, following the recent work of El-Ashwah and Hassan [4], for a function $f(z) \in \Sigma_p$, given by (1.1), also, for $\mu > 0$, $a, c \in \mathbb{C}$ and $Re(c-a) \geq 0$, the integral operator $J_{p,\mu}^{a,c} : \Sigma_p \longrightarrow \Sigma_p$ is defined as follows:

$$J_{p,\mu}^{a,c}f(z) = \begin{cases} f(z); & (a=c), \\ \frac{\Gamma(c-p\mu)}{\Gamma(a-p\mu)\Gamma(c-a)} \\ \int_0^1 t^{a-1}(1-t)^{c-a-1}f(zt^\mu)dt; & (Re(c-a)>0). \end{cases}$$
 (1.3)

By iterations of the integral operators $L_p^m(\lambda, \ell)$ defined by (1.2) and $J_{p,\mu}^{a,c}$ defined by (1.3), we define the linear operator

$$I_{\lambda,\ell}^{p,m}(a,c,\mu):\Sigma_p\longrightarrow\Sigma_p$$
 (1.4)

for the purpose of this paper by:

$$I_{\lambda,\ell}^{p,m}(a,c,\mu)f(z) := L_p^m(\lambda,\ell) \Big(J_{p,\mu}^{a,c} f(z) \Big) = J_{p,\mu}^{a,c} \Big(L_p^m(\lambda,\ell) f(z) \Big).$$
(1.5)

Now, it is easily to see that the operator $I_{\lambda,\ell}^{p,m}(a,c,\mu)$ can be expressed as follows:

$$I_{\lambda,\ell}^{p,m}(a,c,\mu)f(z) = z^{-p} + \frac{\Gamma(c-p\mu)}{\Gamma(a-p\mu)}$$

$$\times \sum_{k=1-p}^{\infty} \frac{\Gamma(a+\mu k)}{\Gamma(c+\mu k)} \left[\frac{\ell}{\ell+\lambda(k+p)} \right]^m a_k z^k,$$

$$(\mu > 0; a, c \in \mathbb{C}, Re(a) > p\mu, Re(c-a) \ge 0;$$

$$\ell > 0; \lambda > 0; m \in \mathbb{N}_0; p \in \mathbb{N}). \tag{1.6}$$

In view of (1.2)–(1.5), it is clear that

$$I_{\lambda,\ell}^{p,0}(a,c,\mu)f(z) = J_{p,\mu}^{a,c}f(z) \quad \text{and}$$

$$I_{\lambda,\ell}^{p,m}(a,a,\mu)f(z) = L_p^m(\lambda,\ell)f(z).$$
(1.7)

Using (1.6), we can obtain the following recurrence relations of the operator $I_{\lambda,\ell}^{p,m}(a,c,\mu)$, which are necessary for our investigations

$$z(I_{\lambda,\ell}^{p,m}(a,c,\mu)f(z))' = \frac{a - p\mu}{\mu} I_{\lambda,\ell}^{p,m}(a+1,c,\mu)f(z) - \frac{a}{\mu} I_{\lambda,\ell}^{p,m}(a,c,\mu)f(z).$$
(1.8)

and

$$z(I_{\lambda,\ell}^{p,m}(a,c+1,\mu)f(z))' = \frac{c-p\mu}{\mu}I_{\lambda,\ell}^{p,m}(a,c,\mu)f(z) - \frac{c}{\mu}I_{\lambda,\ell}^{p,m}(a,c+1,\mu)f(z).$$
(1.9)

Also

$$z\left(I_{\lambda,\ell}^{p,m+1}(a,c,\mu)f(z)\right)' = \frac{\ell}{\lambda}I_{\lambda,\ell}^{p,m}(a,c,\mu)f(z) - \frac{\ell+\lambda p}{\lambda}I_{\lambda,\ell}^{p,m+1}(a,c,\mu)f(z).$$
(1.10)

The operator $I_{\lambda,\ell}^{p,m}(a,c,\mu)$ defined by (1.7) has been extensively studied by many authors with suitable restrictions on the parameters as follows:

- (i) $I_{\lambda,\ell}^{1,-n}(a, c, \mu) = I_{\lambda,\ell}^{n}(a, c, \mu) f(z) (\mu > 0; a, c \in \mathbb{C}, Re(c-a) \ge 0, Re(a) > \mu; \ell > 0; \lambda > 0; n \in \mathbb{Z})$ (see El-Ashwah [5]);
- (ii) $I_{\lambda,\ell}^{p,m}(p+\nu, p+1, 1) = I_{p,\nu}^m(\lambda, \ell) f(z) (m \in \mathbb{N}_0; \lambda, \ell, \nu > 0; p \in \mathbb{N})$ (see El-Ashwah and Aouf [6]);
- (iii) $I_{\nu,\lambda}^{1,m}(a+1,c+1,1)f(z) = \Im_{\lambda,\nu}^m(a,c)f(z)$ $(\lambda,\nu>0; a \in \mathbb{C}; c \in \mathbb{C}\backslash\mathbb{Z}_0^-; m \in \mathbb{N}_0)$ (see Raina and Sharma [7]);
- (iv) $I_{\lambda,\ell}^{p,0}(a+p,c+p,1)f(z) = \ell_p(a,c)f(z)$ $(a \in \mathbb{R}; c \in \mathbb{R} \setminus \mathbb{Z}_0^-, \mathbb{Z}_0^- = \{0,1,2,\ldots\}; p \in \mathbb{N})$ (see Liu and Srivastava [8]);
- (v) $I_{1,\lambda}^{1,\beta}(\nu+1,2,1)f(z) = I_{\lambda,\nu}^{\beta}f(z)$ ($\beta \ge 0$; $\lambda > 0$; $\nu > 0$) (see Piejko and Sokół [9]);
- (vi) $I_{1,\lambda}^{1,n}(\nu+1,2,1)f(z) = I_{\lambda,\nu}^n f(z)$ $(n \in \mathbb{N}_0; \lambda > 0; \nu > 0)$ (see Cho et al. [10]);
- (vii) $I_{\lambda,\ell}^{1,0}(\nu+1,n+2,1)f(z) = \ell_{n,\nu}f(z) \ (n>-1;\nu>0)$ (see Yuan et al. [11]);
- (viii) $I_{\lambda,\ell}^{p,0}(n+2p, p+1, 1) f(z) = D^{n+p-1} f(z)$ (*n* is an integer, n > -p, $p \in \mathbb{N}$) (see Uralegaddi and Somanatha [12]);
- (ix) $I_{1,1}^{p,\alpha}(a,a,\mu)f(z) = P_p^{\alpha}f(z)(\alpha \ge 0; p \in \mathbb{N})$ (see Aqlanet al. [13]);
- (x) $I_{1,\beta}^{1,\alpha}(a, a, \mu) f(z) = P_{\beta}^{\alpha} f(z)(\alpha, \beta > 0; p \in \mathbb{N})$ (see Lashin [14]).

Now, by the help of the linear operator $I_{\lambda,\ell}^{p,m}(a,c,\mu)$, we introduce the subclass $M_{\lambda,\ell}^{p,m}(a,c,\mu;\alpha;A,B)$ of meromorphic functions as follows:

Definition 1. For fixed parameters A, $B(-1 \le B < A \le 1)$ and $0 \le \alpha < p$, the function $f(z) \in \Sigma_p$ is said to be in the class $M_{\lambda,\ell}^{p,m}(a,c,\mu;\alpha;A,B)$ if it satisfies the following subordination condition:

$$\frac{1}{p-\alpha} \left(\frac{-z \left(I_{\lambda,\ell}^{p,m}(a,c,\mu) f(z) \right)'}{I_{\lambda,\ell}^{p,m}(a,c,\mu) f(z)} - \alpha \right) \prec \frac{1+Az}{1+Bz} (z \in U), \quad (1.11)$$

 $(\mu > 0; \, a, \, c \in \mathbb{C}, \, Re(a) > p\mu, \, Re(c-a) \geq 0; \, \ell > 0; \, \lambda > 0; \, m \in \mathbb{N}_0; \, p \in \mathbb{N}).$

Or, equivalently

$$M_{\lambda,\ell}^{p,m}(a,c,\mu;\alpha;A,B)$$

$$= \left\{ f(z) \in \Sigma_{p} : \left| \frac{\frac{z(I_{\lambda,\ell}^{p,m}(a,c,\mu)f(z))'}{I_{\lambda,\ell}^{p,m}(a,c,\mu)f(z)}' + p}{B\frac{z(I_{\lambda,\ell}^{p,m}(a,c,\mu)f(z))'}{I_{\lambda,\ell}^{p,m}(a,c,\mu)f(z)}' + [pB + (A - B)(p - \alpha)]} \right| < 1 \right\}.$$

$$(1.12)$$

Download English Version:

https://daneshyari.com/en/article/483501

Download Persian Version:

https://daneshyari.com/article/483501

<u>Daneshyari.com</u>