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Abstract In the present paper, the differential-geometrical framework for parallel bivariate Pareto 
distribution surfaces (P , P ) is given. Curvatures of a curve lying on (P , P ) , are interpreted in terms of 
the parameters of P . Geometrical and statistical interpretations of some results are introduced and 
plotted. 
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1. Introduction 

Information geometry (Geometry and Nature) has emerged 

from the study of invariant properties of the manifold of proba- 
bility distributions. It is regarded as mathematical sciences hav- 
ing vast developing areas of applications as well as giving new 

trends in geometrical and topological methods. Information ge- 
ometry has many applications which are treated in many dif- 
ferent branches, for instance, statistical inference, linear and 

nonlinear systems, time series, neural networks, linear program- 
ing, convex analysis, completely integrable dynamical systems, 
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quantum information geometry and geometric modeling [1] . A 

classical and intuitive way of describing the relationship be- 
tween the differential geometry and the statistics is introduced, 
see, for instance [2–7] , but in a slightly modified manner. 

Pareto distribution is named after an Italian-born Swiss 
professor of economics, Vilfredo Pareto (1848–1923). Pareto 

[8] originally used this distribution to describe the allocation of 
wealth among individuals since it seemed to show rather well 
the way that a large portion of wealth of any society is owned 

by a smaller percentage of the people in that society [8,9] . Pareto 

distribution plays an important role in socio-economic studies. 
It is often used as a model for analyzing areas including city 
population distribution, stock price fluctuations and oil field 

location. In addition, it has found applications in the military 
area. It has been found to be suitable for approximating the 
right tail of distribution with positive skewness [10] . 

Bivariate Pareto distributions are popular models in many 
applied areas. They are very versatile and a variety of uncertain- 
ties can be usefully modeled by them. We mention: modeling of 
radiation carcinogenesis, performance measures for general sys- 
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tems, reliability, modeling of drought, modeling of dependent 
heavy tailed risks with a non-zero probability of simultaneous 
loss and modeling of daily exchange rate data [11] . 

Creation of parallel surfaces is useful in design and manu- 
facture. Enhancing or reducing the size of free-form surfaces re- 
quires calculation of curvature and other properties of a new 

surface, which is parallel to the original surface. In the Rie- 
mannian framework, several authors studied parallel and semi- 
parallel submanifolds, and a good survey can be found in [12] . 

In the differential geometry of surfaces, a Darboux frame 
is a natural moving frame constructed on a surface. It is the 
analog of the Frenet–Serret frame as applied to surface geome- 
try. A geodesic curve is intrinsic to the geometric characteriza- 
tion of surfaces. Geodesics are used in many fields, for example, 
they are used in object segmentation, multi-scale image analysis, 
computer vision and image processing [13] . 

Abdel-All et al. [14] defined the parameter space of one- 
dimensional Pareto distribution of the first kind using its 
Fisher’s matrix. They calculated the Riemannian and scalar cur- 
vatures to the parameter space. The differential equations of 
the geodesics are obtained and solved. The J-divergence, the 
geodesic distance and the relations between them are found. A 

development of the relation between the J-divergence and the 
geodesic distance is illustrated. The scalar curvature of the J- 
space is represented. 

Many different forms of bivariate Pareto distributions have 
been constructed in the literature [15] . The main objective of 
this paper is to study a bivariate Pareto distribution (two- 
dimensional Pareto distribution) of the first kind that was given 

by Mardia, cited in [15] , corresponding to the one-dimensional 
Pareto distribution of the first kind [14] , without using its 
Fisher’s matrix. 

2. Geometrical and statistical preliminaries 

Let P : M = M (u , v ) be an orientable surface and let N be a 
unit normal vector field of P . We consider a surface P to be 
parallel to P if there is a normal geodesic congruence between 

P and P such that the distance between corresponding points is 
constant, i.e. for each M ∈ P we have 

P : M (u , v ) = M (u , v ) + r N (u , v ) , (1) 

where, r � = 0 is a real constant. We can say that P and P are par- 
allel surfaces at distance r . If K , H and K , H denote the Gaus- 
sian and mean curvatures of P and P , respectively, then we have 
[16] : 

K = 

K 

�
, H = 

H + rK 

�
, � = 1 + 2 rH + r 2 K � = 0 , (2) 

where, the relation between the principal curvatures (κ1 , κ2 ) and 

( κ1 , κ2 ) of (P , P ) is given by 

κ1 = 

κ1 

1 + rκ1 
, κ2 = 

κ2 

1 + rκ2 
. 

Let P be a surface, and let β be a unit speed curve on P . At 
each point on β, consider the following three vectors: the unit 
normal vector N to the surface, the unit tangent vector t to the 
curve and the tangent normal vector E = N ∧ t . This vector is 
tangent to the surface P , but normal to the curve β. These vec- 
tors { t ; E ; N } form a right-handed frame, known as the Darboux 

frame for β on P . Darboux equations for this frame are given 

by [16,17] 

d 
ds 

⎛ 

⎜ ⎜ ⎝ 

t 

E 

N 

⎞ 

⎟ ⎟ ⎠ 

= 

⎛ 

⎜ ⎜ ⎝ 

0 κg κn 

−κg 0 τg 

−κn −τg 0 

⎞ 

⎟ ⎟ ⎠ 

⎛ 

⎜ ⎜ ⎝ 

t 

E 

N 

⎞ 

⎟ ⎟ ⎠ 

, (3) 

where κg is the geodesic curvature, κn is the normal curvature 
and τg is the geodesic torsion of β. Thus, we can write κg , κn and 

τg in the form 

κg = 

(
β′ , N , β′′ ), κn = 

(
β′′ , N 

)
, τg = 

(
β′ , N , N 

′ ), (4) 

and if β is not parameterized by arc length, the above relations 
take the forms 

κg = 

1 

| β′ | 3 
(
β′ , N , β′′ ), κn = 

1 

| β′ | 2 
(
β′′ , N 

)
, τg = 

1 
| β′ | 

(
β′ , N , N 

′ ). (5) 

The bivariate distribution with joint density function for α > 0 

f X , Y ( x , y ; γ , σ , α) 

= α(α + 1) (γ σ ) α+1 λ−(α+2) , x ≥ γ > 0 , y ≥ σ > 0 , (6) 

where, λ = σx + γ y − γ σ may be called a bivariate Pareto dis- 
tribution of the first kind [15] , since the marginal distributions 
have density functions 

f X i ( x i ; θi , α) = α θα
i x 

−(α+1) 
i , x i ≥ θi > 0 , i = 1 , 2 , (7) 

where, X 1 = X , X 2 = Y , x 1 = x , x 2 = y , θ1 = γ , θ2 = σ . 
It can be seen that, for α > 1 , α > 2 , 

E ( X i ) = 

α

α − 1 
θi , E ( X 1 X 2 ) = 

(
α2 − α − 1 

)
( α − 1 ) ( α − 2 ) 

θ1 θ2 , 

Var ( X i ) = 

α

( α − 1 ) 2 ( α − 2 ) 
θ 2 

i . (8) 

The conditional density function of Y , given X = x , is 

f Y | X ( y | x ) = (α + 1) γ (σx ) α+1 λ−(α+2) , y ≥ σ > 0 , γ > 0 , α > 0 . (9) 

The conditional density function of X , given Y = y , is 

f X | Y ( x | y ) 
= (α + 1) σ (γ y ) α+1 λ−(α+2) , x ≥ γ > 0 , σ > 0 , α > 0 . (10) 

Therefore, for α > 1 , we also find 

E ( Y | X = x ) = σ

(
1 + 

x 

γα

)
, 

Var ( Y | X = x ) = 

(
σ

γ

)2 
( α + 1 ) x 

2 

α2 ( α − 1 ) 
, (11) 

E ( X | Y = y ) = γ
(

1 + 

y 
σα

)
, 

Var ( X | Y = y ) = 

(γ

σ

)2 ( α + 1 ) y 2 

α2 ( α − 1 ) 
. (12) 

Using (8) , we find 

Cov (X , Y ) = E ( X Y ) − E (X ) E (Y ) 

= 

γ σ

( α − 1 ) 2 ( α − 2 ) 
, α � = 1 , α � = 2 , (13) 

and consequently, the correlation between X and Y , denoted by 
R ≡ Cor (X , Y ) , is given from 
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