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Abstract Totally real submanifolds have been studied by many geometers in different ambient 
manifolds. The purpose of this note is to study totally real submanifolds in Kaehlerian product man- 
ifolds. We derive some integral formulas computing the Laplacian of the square of the second fun- 
damental form and using these formulas we prove pinching theorems. In fact, we have generalized 
some results due to Yano and Kon [1,2] to the case when the ambient manifold is Kaehlerian product 
manifold. 
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1. Introduction 

The geometry of totally real submanifolds is an interesting field 

which is studied by many geometers. For example, Houh [3] , 
Yau [4] , Chen and Ogiue [5] have studied totally real subman- 
ifolds in an almost Hermitian manifold or a Kaehlerian mani- 
fold of constant holomorphic sectional curvature and obtained 

many interesting results. Moreover, Yano and Kon [1,2] have 
generalized some of the results proved in [6–9] . On the other 
hand, Kaehlerian product manifold has also been paid atten- 
tion by geometers [10] . The object of this note is to study the 
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geometry of totally real submanifolds when the ambient mani- 
fold is a Kaehlerian product manifold. 

2. Preliminaries 

Let M 

n 
be a Kaehlerian manifold of complex dimension n (of 

real dimension 2 n ) and M 

p 
be a Kaehlerian manifold of com- 

plex dimension p (of real dimension 2 p). Let us denote by J n and 

J p almost complex structures of M 

n 
and M 

p 
respectively. Now, 

we suppose that M 

n 
and M 

p 
are complex space forms with con- 

stant holomorphic sectional curvatures c 1 and c 2 and denote 
them by M 

n 
(c 1 ) and M 

p 
(c 2 ) respectively. The Riemannian cur- 

vature tensor R n of M 

n 
(c 1 ) is given by 

R n (X , Y ) Z = 

1 
4 

c 1 [ g n (Y , Z) X − g n (X , Z) Y ] 

+ 

1 
4 

c 1 [ g n (J n Y , Z) J n X − g n (J n X , Z) J n Y + 2 g n (X , J n Y ) J n Z] 
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and the Riemannian curvature tensor R p of M 

p 
(c 2 ) is given by 

R p (X , Y ) Z = 

1 
4 

c 2 [ g p (Y , Z) X − g p (X , Z) Y ] 

+ 

1 
4 

c 2 [ g p (J p Y , Z) J p X − g p (J p X , Z) J p Y + 2 g p (X , J p Y ) J p Z] . 

We consider the Kaehlerian product manifold M = M 

n 
(c 1 ) ×

M 

p 
(c 2 ) . Let us denote by P and Q the projection operators of 

the tangent space of M 

n 
(c 1 ) and M 

p 
(c 2 ) respectively. Then, we 

have P 

2 = P , Q 

2 = Q , PQ = QP = 0 . We put F = P − Q and it 
can be verified that F 2 = I . Thus, F is almost product structure 
on M . Moreover, we define a Riemannian metric g on M by 

g(X , Y ) = g n ( PX , PY ) + g p ( QX , QY ) 

for any vector field X and Y of M . It also follows that 
g( F X , Y ) = g( F Y , X ) . Let us put JX = J n PX + J p QX for 
any vector field X of M . Then we see that J n P = PJ , J p Q = 

QJ , F J = JF , J 2 = −I , g( JX , JY ) = g(X , Y ) , ∇ X J = 0 . Thus, J 
is Kaehlerian structure on M . The Riemannian curvature ten- 
sor R of a Kaehlerian product manifold M is given by [10] 

R (X , Y , Z , W ) = 

1 
16 

(c 1 + c 2 )[ g(Y , Z) g(X , W ) − g(X , Z) g(Y , W ) 

+ g( JY , Z) g( JX , W ) − g( JX , Z) g( JY , W ) 

+ 2 g(X , JY ) g( JZ , W ) + 2 g( F Y , Z) g( F X , W ) 

− g( F X , Z) g( F Y , W ) + g( F JY , Z) g( F JX , W ) 

− g( F JX , Z) g( F JY , W ) + 2 g( F X , JY ) g( F JZ , W )] 

+ 

1 
16 

(c 1 − c 2 )[ g( F Y , Z) g(X , W ) − g( F X , Z) g(Y , W ) 

+ g(Y , Z) g( F X , W ) − g(X , Z) g( F Y , W ) 

+ g( F JY , Z) g( JX , W ) − g( F JX , Z) g( JY , W ) 

+ g( JY , Z) g( F JX , W ) − g( JX , Z) g( F JY , W ) 

+ 2 g( F X , JY ) g( JZ , W ) 

+ 2 g(X , JY ) g( JF Z , W )] (2.1) 

for any vector fields X , Y and Z on M . An n -dimensional Rie- 
mannian manifold M isometrically immersed in a Kaehlerian 

product manifold M is called totally real submanifold of M if 
JT x (M) ⊥ T x (M) for each x ∈ M where T x (M) denotes the 
tangent space to M at x ∈ M. Here we have identified T x (M) 

with its image under the differential of the immersion because 
our computation is local. If X ∈ T x (M) , then JX is a normal 
vector to M . Let g be the metric tensor field of M and g be the 
induced metric tensor field on M . We denote by ∇ (resp. ∇) the 
operator of covariant differentiation with respect to g (resp. g ). 
Then the Gauss and Weingarten formulas are given by 

∇ X Y = ∇ X Y + B(X , Y ) (2.2) 

∇ X N = −A N X + D X N (2.3) 

for any tangent vector fields X , Y and normal vector field N 

on M , where D is the operator of covariant differentiation with 

respect to the linear connection induced in the normal bundle. 
Both A and B are called the second fundamental form of M and 

satisfy 

g (B(X , Y ) , N) = g(A N X , Y ) . (2.4) 

A normal vector field N in the normal bundle is said to be 
parallel if D X N = 0 for any tangent vector field X on M . The 
mean curvature vector H is defined as H = (1 /n ) T rB , where 
T rB = 

∑ 

i B(e i , e i ) for an orthonormal frame { e i } . We say that 

• M is minimal if H = 0 . 
• M is totally umbilical if the second fundamental form of M 

satisfies B(X , Y ) = g(X , Y ) H . 
• M is totally geodesic if the second fundamental form of M 

vanishes identically, that is, B = 0 . 

We choose a local field of orthonormal frames 
e 1 , . . . , e n ; e n +1 , . . . , e n + p ; e 1 ∗ = Je 1 , . . . , e n ∗ = Je n ; e (n +1) ∗ = 

Je n +1 , . . . , e (n + p) ∗ = Je n + p in M in such a way that re- 
stricted to M, e 1 , . . . , e n are tangent to M . With respect 
to this frame field of M , let ω 

1 , . . . , ω 

n ; ω 

n +1 , . . . , ω 

n + p ; 
ω 

1 ∗ , . . . , ω 

n ∗ ; ω 

(n +1) ∗ , . . . , ω 

(n + p) ∗ be the field of dual frames. 
Unless otherwise stated, we use the conventions that the 
ranges of indices are respectively A, B, C, D = 1 , . . . , n + 

p, 1 ∗, . . . , (n + p) ∗; i, j, k, l, t, s = 1 , . . . , n ; a, b, c, d = 

n + 1 , . . . , n + p, 1 ∗, . . . , (n + p) ∗; α, β, γ = n + 1 , . . . , n + p; 
λ, μ, ν, = n + 1 , . . . , n + p, (n + 1) ∗, . . . , (n + p) ∗ and that 
when an index appears twice in any term as a subscript and a 
superscript, it is understood that this index is summed over its 
range. Then the structure equations of M are given by 

dω 

A = −ω 

A 
B ω 

B , ω 

A 
B + ω 

B 
A = 0 , 

ω 

i 
j + ω 

j 
i = 0 , ω 

i 
j = ω 

i ∗
j ∗ , ω 

i ∗
j = ω 

j ∗
i , 

ω 

α
β + ω 

β
α = 0 , ω 

α
β = ω 

α∗
β∗ , ω 

α∗
β = ω 

β∗
α , (2.5) 

ω 

i 
α + ω 

α
i = 0 , ω 

i 
α = ω 

i ∗
α∗ , ω 

i ∗
α = ω 

α∗
i , 

dω 

A 
B = −ω 

A 
C ω 

C 
B + φA 

B , φA 
B = 

1 
2 

K 

A 
BCD 

ω 

C ∧ ω 

D (2.6) 

Restricting these forms to M , we have 

ω 

a = 0 , (2.7) 

dω 

i = −ω 

i 
k ∧ ω 

k , (2.8) 

dω 

i 
j = −ω 

i 
k ∧ ω 

k 
j + 	i 

j , 	i 
j = 

1 
2 

R 

i 
jkl ω 

k ∧ ω 

l (2.9) 

Since 0 = dω 

a = −ω 

a 
i ∧ ω 

i , by Cartan’s lemma we have 

ω 

a 
i = h a i j ω 

j , h a i j = h a ji (2.10) 

We see that g(A a e i , e j ) = h a i j . The Gauss-equation is given by 

R 

i 
jkl = K 

i 
jkl + 

∑ 

a 

(h a ik h 
a 
jl − h a il h 

a 
jk ) (2.11) 

Moreover we have 

dω 

a 
b = −ω 

a 
c ∧ ω 

c 
b + 	a 

b , 	a 
b = 

1 
2 

R 

a 
bkl ω 

k ∧ ω 

l (2.12) 

and the Ricci-equation is given by 

R 

a 
bkl = K 

a 
bkl + 

∑ 

i 

(h a ik h 
b 
il − h a il h 

b 
ik ) (2.13) 

From (2.5) and (2.10) we have 

h i 
∗
jk = h j 

∗
ik = h k 

∗
i j (2.14) 

We define the covariant derivative h a i jk of h a i j by setting 
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