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Abstract Quartile ranked set sampling (QRSS) method is suggested by Muttlak (2003) for estimat- 
ing the population mean. In this article, the QRSS procedure is considered to estimate the distribu- 
tion function of a random variable. The proposed QRSS estimator is compared with its counterparts 
based on simple random sampling (SRS) and ranked set sampling (RSS) schemes. It is found that the 
suggested estimator of the distribution function of a random variable X for a given x is biased and 
more efficient than its competitors using SRS and RSS. 
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1. Introduction 

Let X 1 , X 2 , . . . , X n be a random sample of size n having proba- 
bility density function (pdf) f (x ) and cumulative distribution 

function (cdf) F (x ) , with a finite mean μ and variance σ 2 . Let 
X 11 i , X 12 i , . . . , X 1 ni ; X 21 i , X 22 i , . . . , X 2 ni ; . . . ; X n 1 i , X n 2 i , . . . , X nni 

be n independent simple random samples each of size n in the 
i th cycle (i = 1 , 2 , . . . , m ) . 

Let F SRS (x ) denote the empirical distribution function of 
a simple random sample X 1 , X 2 , . . . , X nm 

from F (x ) . Bahadur 
[2] showed that F SRS (x ) has the following properties: 
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1. F SRS (x ) is an unbiased estimator of F (x ) for a given x . 
2. Var [ F SRS (x )] = 

1 
mn F (x )[1 − F (x )] . 

3. F SRS (x ) is a consistent estimator of F (x ) . 

The RSS was first suggested by McIntyre [3] as a method 

for estimating the mean of pasture and forage yields. The RSS 

is a useful method when the sampling units can be easily 
ranked than quantified. McIntyre proposed the ranked set sam- 
ple mean as an estimator of the population mean and showed 

that the RSS mean estimator is unbiased and is more efficient 
than the SRS counterpart. 

The RSS can be described as follows: randomly select n sets 
each of size n from the target population. Then, visually rank 

the units within each sample with respect to the variable of 
interest. From the first set of n units the smallest ranked unit 
is selected. From the second set of n units the second small- 
est ranked unit is selected. The process is continued until the 
largest ranked unit is measured from the n th set. To increase the 
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Table 1 The relative precision of F QRSS (x ) with respect to F SRS (x ) and bias values of F QRSS (x ) for 4 ≤ n ≤ 11 . 

F (x ) n = 4 n = 6 n = 8 n = 10 n = 5 n = 7 n = 9 n = 11 

0.01 RP 0 .5270 7 .9487 5 .3923 9 .1690 11 .0248 7 .0763 4 .5962 8 .2674 
Bias 0 .0090 −0 .0093 −0 .0088 −0 .0099 −0 .0096 −0 .0092 −0 .0084 −0 .0099 

0.10 RP 0 .6852 1 .4566 1 .1587 1 .2156 1 .7024 1 .4095 1 .1780 1 .1780 
Bias 0 .0718 −0 .0429 −0 .0066 −0 .0650 −0 .0655 −0 .0356 0 .0006 −0 .0592 

0.20 RP 0 .9939 1 .3260 1 .0919 1 .2896 1 .3138 1 .4388 1 .1553 1 .3873 
Bias 0 .0973 −0 .0254 0 .0482 −0 .0396 −0 .0802 −0 .0142 0 .0527 −0 .0257 

0.30 RP 1 .6994 1 .6332 1 .5037 1 .7397 1 .2961 1 .9075 1 .7570 1 .9325 
Bias 0 .0849 −0 .0044 0 .0727 0 .0098 −0 .0673 0 .0062 0 .0679 0 .0201 

0.40 RP 2 .9902 2 .2115 3 .3200 2 .9599 1 .3908 2 .5254 3 .3480 3 .1859 
Bias 0 .0475 0 .0041 0 .0505 0 .0224 −0 .0367 0 .0103 0 .0447 0 .0265 

0.50 RP 4 .3694 2 .5640 7 .3573 4 .8399 1 .4534 2 .8914 5 .5273 4 .8417 
Bias 0 .0005 0 .0008 0 .0000 −0 .0005 0 .0003 0 .0005 0 .0004 −0 .0003 

0.60 RP 3 .0824 2 .2121 3 .2736 2 .9261 1 .3843 2 .5467 3 .3917 3 .2440 
Bias −0 .0481 −0 .0040 −0 .0508 −0 .0216 0 .0354 −0 .0105 −0 .0443 −0 .0256 

0.70 RP 1 .7065 1 .6410 1 .5109 1 .7521 1 .2757 1 .8497 1 .7220 1 .9539 
Bias −0 .0848 0 .0051 −0 .0733 −0 .0088 0 .0662 −0 .0067 −0 .0686 −0 .0194 

0.80 RP 1 .0080 1 .3748 1 .1220 1 .2898 1 .2997 1 .4229 1 .1603 1 .3658 
Bias −0 .0960 0 .0277 −0 .0483 0 .0391 0 .0812 0 .0136 −0 .0536 0 .0256 

0.90 RP 0 .6628 1 .4455 1 .1659 1 .2054 1 .6756 1 .4006 1 .1633 1 .1870 
Bias −0 .0736 0 .0428 0 .0063 0 .0650 0 .0659 0 .0352 0 .0004 0 .0592 

0.99 RP 0 .5126 7 .3353 4 .9833 9 .4109 11 .8336 7 .3257 4 .4370 8 .6399 
Bias −0 .0098 0 .0092 0 .0086 0 .0099 0 .0096 0 .0093 0 .0084 0 .0099 

sample size, the whole process can be repeated m times to obtain 

a set of size nm units. 
Let X j(1: n ) i , X j(2: n ) i , . . . , X j(n : n ) i be the order statistics 

of the j th sample X j1 i , X j2 i , . . . , X jni ( j = 1 , 2 , . . . , n ) in 

the i th cycle (i = 1 , 2 , . . . , m ) . Then, the measured units 
X 1(1: n ) i , X 2(2: n ) i , . . . , X n (n : n ) i are denoted to the RSS. David and 

Nagaraja [4] showed that the cdf and the pdf of the j th order 
statistic X ( j: n ) are given by 

F ( j: n ) (x ) = 

n ∑ 

i= j 

( 

n 

i 

) 

[ F (x ) ] i [ 1 − F (x ) ] n −i , −∞ < x < ∞ , 

and 

f ( j: n ) (x ) = 

n ! 
( j − 1)!(n − j)! 

[ F (x ) ] j−1 [ 1 − F (x ) ] n − j f ( x ) . 

The mean and the variance of X ( j: n ) are given by μ( j: n ) = ∫ ∞ 

−∞ 

x f ( j: n ) (x ) dx and σ 2 
( j: n ) = 

∫ ∞ 

−∞ 

(x − μ( j: n ) ) 
2 f ( j: n ) (x ) dx , re- 

spectively. Takahasi and Wakimoto [5] independently intro- 
duced the same method of RSS with mathematical theory and 

showed that 

f (x ) = 

1 
n 

n ∑ 

j=1 

f ( j: n ) (x ) , μ = 

1 
n 

n ∑ 

j=1 

μ( j: n ) , and 

σ 2 = 

1 
n 

n ∑ 

j=1 

σ 2 
( j: n ) + 

1 
n 

n ∑ 

j=1 

(
μ( j: n ) − μ

)2 
. 

For a fixed x , Stokes and Sager [6] suggested an estimator for 
F (x ) using RSS as 

F RSS (x ) = 

1 
mn 

m ∑ 

i=1 

n ∑ 

j=1 

I 
(
X j ( j : n ) i ≤ x 

)
, 

where I(·) is an indicator function. They proved the following: 

1. F RSS (x ) is an unbiased estimator for F (x ) . 
2. Var [ F RSS (x )] = 

1 
mn 2 
∑ n 

j=1 F ( j: n ) (x )[1 − F ( j: n ) (x )] . 

3. F RSS (x ) −E [ F RSS (x )] √ 

Var [ F RSS (x )] 
converges in distribution to the standard 

normal as m → ∞ when x and n are fixed. 

For more about estimation of the distribution function in 

ranked set sampling methods see Stokes and Sager [6] , Samawi 
and Al-Sagheer [7] , Kim and Kim [8] , Al-Saleh and Samuh [9] , 
and Ghosh and Tiwari [10] . 

The rest of this paper is organized as follows. In Section 2 , 
we introduced the suggested estimation of the distribution func- 
tion using QRSS method. The performance of the new estima- 
tor against its SRS and RSS counterparts is given in Section 3 . 
Section 4 , is devoted for some inferences about F (x ) . In Section 

5 , some concluding remarks are provided. 

2. Estimation of F (x ) using QRSS 

The quartile ranked set sampling procedure as suggested by 
Muttlak [1] can be summarized as follows. Randomly select n 
samples each of size n units from the target population and rank 

the units within each sample with respect to the variable of in- 
terest. If the sample size n is even, select and measure from the 
first n/ 2 samples the Q 1 (n + 1) th smallest ranked unit of each 

sample, i.e., the first quartile, and from the second n/ 2 samples 
the Q 3 (n + 1) th smallest ranked unit of each sample, i.e., the 
third quartile. Note that, we always take the nearest integer of 
Q 1 (n + 1) th and Q 3 (n + 1) th where Q 1 = 25% , and Q 3 = 75% . 
If the sample size n is odd, select and measure from the first 
(n − 1) / 2 samples the Q 1 (n + 1) th smallest ranked unit of each 

sample and from the other (n − 1) / 2 samples the Q 3 (n + 1) th 

smallest ranked unit of each sample, and from one sample the 
median for that sample. The cycle can be repeated m times if 
needed to get a sample of size nm units. 

If the sample size n is even, in the i th cycle (i = 1 , 2 , . . . , m ) , 
let X j(Q 1 (n +1): n ) i be the (Q 1 (n + 1)) th smallest ranked unit of the 
j th sample ( j = 1 , 2 , . . . , n 

2 ) , and X j(Q 3 (n +1): n ) i be the 
(Q 3 (n + 1)) th smallest ranked unit of the j th sample 
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