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Abstract Let R be an associative ring. An additive mapping d : R! R is called a Jordan deriva-

tion if dðx2Þ ¼ dðxÞxþ xdðxÞ holds for all x 2 R. The objective of the present paper is to character-

ize a prime ring R which admits Jordan derivations d and g such that ½dðxmÞ; gðynÞ� ¼ 0 for all

x; y 2 R or dðxmÞ � gðynÞ ¼ 0 for all x; y 2 R, where m P 1 and n P 1 are some fixed integers. This

partially extended Herstein’s result in [6, Theorem 2], to the case of (semi)prime ring involving pair

of Jordan derivations. Finally, we apply these purely algebraic results to obtain a range inclusion

result of continuous linear Jordan derivations on Banach algebras.
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1. Introduction

Throughout this paper R will denote an associative ring with
center ZðRÞ. Recall that a ring R is said to be prime if for any
a; b 2 R; aRb ¼ f0g implies a ¼ 0 or b ¼ 0, and R is semiprime
if for any a 2 R; aRa ¼ f0g implies a ¼ 0. A ring R is said to

be n-torsion free, where n > 1 is an integer, in case nx ¼ 0 im-

plies x ¼ 0 for all x 2 R. For any x; y 2 R, the symbol ½x; y� will
denote the commutator xy� yx and the symbol x � y will stand
for the anti-commutator xyþ yx. Following [1], an additive
mapping d : R! R is said to be a derivation (resp. Jordan der-
ivation) on R if dðxyÞ ¼ dðxÞyþ xdðyÞ (resp. dðx2Þ ¼ dðxÞxþ
xdðxÞ) holds for all x; y 2 R. Let S be a nonempty subset of R.
A mapping f : R! R is called centralizing on S if ½fðxÞ; x� 2
ZðRÞ for all x 2 S and is called commuting on S if ½fðxÞ; x� ¼ 0

for all x 2 S. The study of such mappings were initiated by Pos-
ner. In [2, Lemma 3], Posner proved that if a prime ring R has a
nonzero commuting derivation on R, then R is commutative.
This result was subsequently refined and extended by a number

of algebraists; we refer the reader to [3–5] for a state-of-art
account and a comprehensive bibliography.

In [6], Herstein proved the following result: If R is a prime

ring of characteristic not two admitting a nonzero derivation d
such that ½dðxÞ; dðyÞ� ¼ 0 for all x; y 2 R, then R is commuta-
tive. Further, Daif [7] showed that a 2-torsion free semiprime
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ring R admits a derivation d such that ½dðxÞ; dðyÞ� ¼ 0 for all
x; y 2 I, where I is a nonzero ideal of R and d is nonzero on
I, then R contains a nonzero central ideal. Motivated by the

above result, Ashraf and Rehman [8] proved that if R is a 2-
torsion free prime ring admitting a nonzero derivation d such
that dðxÞ � dðyÞ ¼ 0 for all x; y 2 I, where I is a nonzero ideal

of R, then R is commutative. This result was further extended
by first author together with Shuliang [9, Theorem 3.2] for
semiprime rings. In Section 3, our aim is to generalize these re-

sults for pair of Jordan derivations d and g. More precisely, it
was shown that if R is a maxfm; n; 2g!-torsion free prime ring,
where m P 1 and n P 1 are some fixed integers, and d; g are
nonzero Jordan derivations of R such that ½dðxmÞ; gðynÞ� ¼ 0

for all x; y 2 R, then R is commutative. Further, some more re-
lated results have also been discussed. In Section 4, we apply
purely algebraic results from Section 3 to discuss the range

inclusion problems in the setting of continuous linear Jordan
derivations on Banach algebras. Throughout this paper, we as-
sume that m P 1 and n P 1 are some fixed integers.

2. Some preliminaries

We shall do a great deal of calculations with commutators and

anti-commutators, routinely using the following basic identi-
ties: For all x; y; z 2 R;

½xy; z� ¼ x½y; z� þ ½x; z�y and ½x; yz� ¼ ½x; y�zþ y½x; z�
ðxþ yÞ � z ¼ x � zþ y � z and x � ðyþ zÞ ¼ x � yþ x � z
x � ðyzÞ ¼ ðx � yÞz� y½x; z� ¼ yðx � zÞ þ ½x; y�z
ðxyÞ � z ¼ xðy � zÞ � ½x; z�y ¼ ðx � zÞyþ x½y; z�:

We begin with the following lemmas which are essential for
developing the proof of our results.

Lemma 2.1 [4, Theorem 4]. Let R be a prime ring and I a
nonzero left ideal of R. If R admits a nonzero derivation d which

is centralizing on I, then R is commutative.

Lemma 2.2 [10, Lemma 4]. Let R be a 2-torsion free semiprime
ring and a; b 2 R. If for all x 2 R the relation axbþ bxa ¼ 0

holds, then axb ¼ bxa ¼ 0 is fulfilled for all x 2 R.

Lemma 2.3 [11, Lemma 1]. Let R be an m!-torsion free ring.
Suppose y1; y2; . . . ; ym 2 R satisfying ay1 þ a2y2 þ . . .þ
amym ¼ 0 for a ¼ 1; 2; . . . ;m. Then yi ¼ 0 for all i.

Lemma 2.4 [12, Lemma 3.2]. A continuous Jordan derivation

on a Banach algebra leaves invariant the primitive ideals in the
algebra.

3. Generalizations of the condition dðxÞdðyÞ ¼ dðyÞdðxÞ

To state our results precisely, we fix some notations. From
now, Q always denotes the maximal right ring of quotients
of R. If R is a (semi)prime ring, then Q is also a (semi)prime
ring. The center of Q is called the extended centroid of R

and is denoted by C. For the explanation of maximal right ring
of quotients we refer the reader to [13]. We shall use the fact
that any semiprime ring R and its maximal right ring of quo-

tients Q satisfy the same differential identities which is very

useful since Q contains the identity element (see Theorem 3
in [14]). For the explanation of differential identities we refer
the reader to [15,16]. Throughout this section, we will use

the fact that image of the identity of a ring R is zero under
any derivation. We begin our investigations with the following
theorem which generalizes Theorem 2 in [6].

Theorem 3.1. Let R be a maxfm; n; 2g!-torsion free prime ring,
and d; g be nonzero Jordan derivations of R. If ½dðxmÞ; gðynÞ� ¼ 0
holds for all x; y 2 R, then R is commutative.

Proof. Since d and g are Jordan derivations on R; d and g also

are derivations on R by Herstein’s theorem [1]. By the assump-
tion, we have

½dðxmÞ; gðynÞ� ¼ 0 for all x; y 2 R:

It is well known that R and Q satisfy the same differential
identities [14, Theorem 3]. Therefore

½dðxmÞ; gðynÞ� ¼ 0 for all x; y 2 Q: ð3:1Þ

Note that Q has the identity element. Replacing x by 1þ x
in (3.1), we get

m

1

 !
½dðxÞ; gðynÞ� þ

m

2

 !
½dðx2Þ; gðynÞ� þ � � �

þ
m

m

 !
½dðxmÞ; gðynÞ� ¼ 0: ð3:2Þ

Substituting px for x in (3.2), where p ¼ 1; 2; . . . ;m, we get

p
m

1

� �
½dðxÞ; gðynÞ� þ p2

m

2

� �
½dðx2Þ; gðynÞ� þ � � �

þ pm
m

m

� �
½dðxmÞ; gðynÞ� ¼ 0:

Using Lemma 2.3, we obtain
m
r

� �
½dðxrÞ; gðynÞ� ¼ 0 for all

x; y 2 Q and r ¼ 1; 2; . . . ;m. In particular for r ¼ 1, we have

m½dðxÞ; gðynÞ� ¼ 0 for x; y 2 Q. By applying torsion free fact
of Q, we are forced to conclude that

½dðxÞ; gðynÞ� ¼ 0 for all x; y 2 Q:

Now, replacing y by yþ 1 and using similar approach as
above, we obtain

½dðxÞ; gðyÞ� ¼ 0 for all x; y 2 Q: ð3:3Þ

Again replace y by yz in (3.3) to get

½dðxÞ; gðyÞ�zþ gðyÞ½dðxÞ; z� þ y½dðxÞ; gðzÞ� þ ½dðxÞ; y�gðzÞ ¼ 0

for all x; y; z 2 Q: ð3:4Þ

Application of (3.3) yields that

gðyÞ½dðxÞ; z� þ ½dðxÞ; y�gðzÞ ¼ 0 for all x; y; z 2 Q: ð3:5Þ

Substituting rz for z in (3.5) and using it, we get

gðyÞr½dðxÞ; z� þ ½dðxÞ; y�rgðzÞ ¼ 0 for all r; x; y; z 2 Q:

In particular, for y ¼ z, we have
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