Egyptian Mathematical Society
Journal of the Egyptian Mathematical Society

Subclasses of bi-univalent functions defined by convolution

R.M. El-Ashwah

Department of Mathematics, Faculty of Science, Damietta University, New Damietta 34517, Egypt

Received 10 April 2013; accepted 8 June 2013
Available online 13 November 2013

KEYWORDS

Analytic and univalent functions;
Bi-univalent functions;
Starlike and convex functions;
Coefficients bounds

Abstract

In this paper, we introduced two new subclasses of the function class Σ of bi-univalent functions analytic in the open unit disc defined by convolution. Furthermore, we find estimates on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in these new subclasses.

2000 MATHEMATICS SUBJECT CLASSIFICATION: 30C45; 30C55; 30C80

© 2013 Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society. Open access under CC BY-NC-ND license.

1. Introduction and definitions

Let \mathcal{A} denote the class of functions of the form:
$f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$,
which are analytic in the open unit disc $\mathcal{U}=\{z:|z|<1\}$. Further, by \mathcal{S} we shall denote the class of all functions in \mathcal{A} which are univalent in \mathcal{U}.

For $f(z)$ defined by (1.1) and $\Phi(z)$ defined by
$\Phi(z)=z+\sum_{n=2}^{\infty} \phi_{n} z^{n} \quad\left(\phi_{n} \geqslant 0\right)$,
the Hadamard product $(f * \Phi)(z)$ of the functions $f(z)$ and $\Phi(z)$ defined by
$(f * \Phi)(z)=z+\sum_{n=2}^{\infty} a_{n} \phi_{n} z^{n}=(\Phi * f)(z)$.

E-mail address: r_elashwah@yahoo.com

Peer review under responsibility of Egyptian Mathematical Society.

	Production and hosting by Elsevier

For $0 \leqslant \alpha<1$ and $\lambda \geqslant 0$, we let $Q_{\lambda}(h, \alpha)$ be the subclass of \mathcal{A} consisting of functions $f(z)$ of the form (1.1) and functions $h(z)$ given by
$h(z)=z+\sum_{n=2}^{\infty} h_{n} z^{n} \quad\left(h_{n}>0\right)$
and satisfying the analytic criterion:
$Q_{\lambda}(h, \alpha)=\left\{f \in \mathcal{A}: \operatorname{Re}\left((1-\lambda) \frac{(f * h)(z)}{z}+\lambda(f * h)^{\prime}(z)\right)>\alpha, 0 \leqslant \alpha<1, \lambda \geqslant 0\right\}$.

It is easy to see that $Q_{\lambda_{1}}(h, \alpha) \subset Q_{\lambda_{2}}(h, \alpha)$ for $\lambda_{1}>\lambda_{2} \geqslant 0$. Thus, for $\lambda \geqslant 1,0 \leqslant \alpha<1, Q_{\lambda}(h, \alpha) \subset Q_{1}(h, \alpha)=\{f, h \in \mathcal{A}$: $\left.\operatorname{Re}(f * h)^{\prime}(z)>\alpha, 0 \leqslant \alpha<1\right\}$ and hence $Q_{\lambda}(h, \alpha)$ is univalent class (see [1-3]).

We note that $Q_{\lambda}\left(\frac{z}{1-z}, \alpha\right)=Q_{\lambda}(\alpha)$ (see Ding et al. [4]).
It is well known that every function $f \in \mathcal{S}$ has an inverse f^{-1}, defined by
$f^{-1}(f(z))=z \quad(z \in \mathcal{U})$
and
$f\left(f^{-1}(w)\right)=w \quad\left(|w|<r_{0}(f) ; r_{0}(f) \geqslant \frac{1}{4}\right)$,
where

$$
f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}
$$

$$
+\cdots
$$

A function $f \in \mathcal{A}$ is said to be bi-univalent in \mathcal{U} if both $f(z)$ and $f^{-1}(z)$ are univalent in \mathcal{U}.

Let Σ denote the class of bi-univalent functions in \mathcal{U} given by (1.1). For a brief history and interesting examples in the class Σ, (see Srivastava et al. [5]).

Brannan and Taha [6] (see also [7]) introduced certain subclasses of the bi-univalent function class Σ similar to the familiar subclasses $\mathcal{S}^{*}(\alpha)$ and $\mathcal{K}(\alpha)$ of starlike and convex functions of order $\alpha(0 \leqslant \alpha<1)$, respectively (see [8]). Thus, following Brannan and Taha [6] (see also [7]), a function $f \in \mathcal{A}$ is in the class $\mathcal{S}_{\Sigma}^{*}(\alpha)$ of strongly bi-starlike functions of order $\alpha(0<\alpha \leqslant 1)$ if each of the following conditions is satisfied:
$f \in \Sigma \quad$ and $\quad\left|\arg \left(\frac{z f^{\prime}(z)}{f(z)}\right)\right|<\frac{\alpha \pi}{2} \quad(0<\alpha \leqslant 1 ; z \in \mathcal{U})$
and
$\left|\arg \left(\frac{z g^{\prime}(w)}{g(w)}\right)\right|<\frac{\alpha \pi}{2} \quad(0<\alpha \leqslant 1 ; w \in \mathcal{U})$,
where g is the extension of f^{-1} to \mathcal{U}. The classes $\mathcal{S}_{\Sigma}^{*}(\alpha)$ and $\mathcal{K}_{\Sigma}(\alpha)$ of bi-starlike functions of order α and bi-convex functions of order α, corresponding (respectively) to the function classes $\mathcal{S}^{*}(\alpha)$ and $\mathcal{K}(\alpha)$, were also introduced analogously. For each of the function classes $\mathcal{S}_{\Sigma}^{*}(\alpha)$ and $\mathcal{K}_{\Sigma}(\alpha)$, they found non-sharp estimates on the first two Taylor-Maclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ (for details, see $[6,7]$).

The object of the present paper is to introduce two new subclasses of the function class Σ and find estimates on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in these new subclasses of the function class Σ employing the techniques used earlier by Srivastava et al. [5].

In order to derive our main results, we have to recall here the following lemma.

Lemma 1 [9]. Let $p \in \mathcal{P}$ the family of all functions p analytic in \mathcal{U} for which $\operatorname{Rep}(z)>0$ and have the form $p(z)=1+p_{1} z+$ $p_{2} z^{2}+p_{3} z^{3}+\cdots$ for $z \in \mathcal{U}$. Then $\left|p_{n}\right| \leqslant 2$, for each n.

2. Coefficient bounds for the function class $\mathcal{B}(h, \alpha, \lambda)$

Definition 1. A function $f(z)$ given by (1.1) is said to be in the class $\mathcal{B}_{\Sigma}(h, \alpha, \lambda)$ if the following conditions are satisfied:
$f \in \Sigma \quad$ and $\quad\left|\arg \left((1-\lambda) \frac{(f * h)(z)}{z}+\lambda(f * h)^{\prime}(z)\right)\right|$
$<\frac{\alpha \pi}{2} \quad(0<\alpha \leqslant 1 ; \lambda \geqslant 1 ; z \in \mathcal{U})$
and

$$
\begin{align*}
& \left|\arg \left((1-\lambda) \frac{(f * h)^{-1}(w)}{w}+\lambda\left((f * h)^{-1}\right)^{\prime}(w)\right)\right| \\
& \quad<\frac{\alpha \pi}{2} \quad(0<\alpha \leqslant 1 ; \lambda \geqslant 1 ; w \in \mathcal{U}) \tag{2.2}
\end{align*}
$$

where the function $h(z)$ is given by (1.4) and $(f * h)^{-1}(w)$ is defined by:

$$
\begin{align*}
(f * h)^{-1}(w)= & w-a_{2} h_{2} w^{2}+\left(2 a_{2}^{2} h_{2}^{2}-a_{3} h_{3}\right) w^{3} \\
& -\left(5 a_{2}^{3} h_{2}^{3}-5 a_{2} h_{2} a_{3} h_{3}+a_{4} h_{4}\right) w^{4}+\cdots . \tag{2.3}
\end{align*}
$$

We note that for $\lambda=1$ and $h(z)=\frac{z}{1-z}$, the class $\mathcal{B}_{\Sigma}(h, \alpha, \lambda)$ reduces to the class $\mathcal{H}_{\Sigma}^{\alpha}$ introduced and studied by Srivastava et al. [5]. Also for $h(z)=\frac{z}{1-z}$ the class $\mathcal{B}_{\Sigma}(h, \alpha, \lambda)$ reduces to the class $\mathcal{B}_{\Sigma}(\alpha, \lambda)$ introduced and studied by Frasin and Aouf [10].

We begin by finding the estimates on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in the class $\mathcal{B}_{\Sigma}(h, \alpha, \lambda)$.

Theorem 1. Let $f(z)$ given by (1.1) be in the class $\mathcal{B}_{\Sigma}(h, \alpha, \lambda), 0<\alpha \leqslant 1$ and $\lambda \geqslant 1$. Then
$\left|a_{2}\right| \leqslant \frac{2 \alpha}{h_{2} \sqrt{(\lambda+1)^{2}+\alpha\left(1+2 \lambda-\lambda^{2}\right)}}$
and
$\left|a_{3}\right| \leqslant \frac{1}{h_{3}}\left(\frac{4 \alpha^{2}}{(\lambda+1)^{2}}+\frac{2 \alpha}{(2 \lambda+1)}\right)$.
Proof. It follows from (2.1) and (2.2) that
$(1-\lambda) \frac{(f * h)(z)}{z}+\lambda(f * h)^{\prime}(z)=[p(z)]^{\alpha}$
and
$(1-\lambda) \frac{(f * h)^{-1}(w)}{w}+\lambda\left((f * h)^{-1}\right)^{\prime}(w)=[q(w)]^{\alpha}$,
where $p(z)$ and $q(w) \in \mathcal{P}$ and have the forms
$p(z)=1+p_{1} z+p_{2} z^{2}+p_{3} z^{3}+\cdots$
and
$q(w)=1+q_{1} w+q_{2} w^{2}+q_{3} w^{3}+\cdots$.
Now, equating the coefficients in (2.6) and (2.7), we get

$$
\begin{align*}
& (\lambda+1) a_{2} h_{2}=\alpha p_{1} \tag{2.10}\\
& (2 \lambda+1) a_{3} h_{3}=\alpha p_{2}+\frac{\alpha(\alpha-1)}{2} p_{1}^{2} \tag{2.11}\\
& -(\lambda+1) a_{2} h_{2}=\alpha q_{1} \tag{2.12}
\end{align*}
$$

and
$(2 \lambda+1)\left(2 a_{2}^{2} h_{2}^{2}-a_{3} h_{3}\right)=\alpha q_{2}+\frac{\alpha(\alpha-1)}{2} q_{1}^{2}$.
From (2.10) and (2.12), we get

$$
\begin{equation*}
p_{1}=-q_{1} \tag{2.14}
\end{equation*}
$$

and
$2(\lambda+1)^{2} a_{2}^{2} h_{2}^{2}=\alpha^{2}\left(p_{1}^{2}+q_{1}^{2}\right)$.

https://daneshyari.com/en/article/483522

Download Persian Version:

https://daneshyari.com/article/483522

Daneshyari.com

