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Abstract In the present paper, we introduce a family of integral operators I k;l
p;n;dða; b; cÞ associate

with the Noor integral operator in the open unit disk U ¼ fz 2 C : jzj < 1g, which is defined by

the convolution ½flp;dða; b; cÞðzÞ�
ð�1Þ � fðzÞ, where

flp;dða; b; cÞðzÞ ¼ ð1� lþ dÞzp2F1ða; b; c; zÞ þ ðl� dÞz½zp2F1ða; b; c; zÞ�0 þ ldz2½zp2F1ða; b; c; zÞ�00

ðp 2 N ¼ f1; 2; � � �g; l; d P 0; z 2 UÞ:

By using the operator I k;l
p;n;dða; b; cÞ, we investigate some subordination and superordination

preserving properties for certain classes of analytic and multivalent functions in U. Various sand-

wich-type results for these multivalent functions are also obtained.
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1. Introduction

Let HðUÞ denote the class of analytic functions in the open
unit disk U ¼ fz 2 C : jzj < 1g. For a 2 C and
n 2 N ¼ f1; 2; � � �g, let

H½a; n� ¼ ff 2 HðUÞ : fðzÞ ¼ aþ anz
n þ anþ1z

nþ1 þ � � �g:

Let f and g be two members of HðUÞ. The function f is said to
be subordinate to g, or g is said to be superordinate to f, if

there exists a Schwarz function x, analytic in U with
x(0) = 0 and jxðzÞj < 1ðz 2 UÞ, such that
fðzÞ ¼ gðxðzÞÞðz 2 UÞ. In such a case, we write f p g or
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fðzÞ � gðzÞðz 2 UÞ. Furthermore, if the function g is univalent

in U, then we have (see [1,2]):

f � g ðz 2 UÞ () fð0Þ ¼ gð0Þ and fðUÞ � gðUÞ:

Definition 1.1 (see [1]). Let / : C2 ! C and let h be univalent
in U. If p is analytic in U and satisfies the following differential

subordination

/ðpðzÞ; zp0ðzÞÞ � hðzÞ ðz 2 UÞ; ð1:1Þ

then p is called a solution of the differential subordination
(1.1). The univalent function q is called a dominant of the solu-
tions of the differential subordination (1.1), if p � q for all p

satisfying (1.1). A dominant ~q that satisfies ~q � q for all domi-
nants q of (1.1) is said to be the best dominant.

Definition 1.2 (see [3]). Let u : C2 ! C and let h be univalent

in U. If p and uðpðzÞ; zp0ðzÞÞ are univalent in U and satisfy the
following differential superordination

hðzÞ � uðpðzÞ; zp0ðzÞÞ ðz 2 UÞ; ð1:2Þ

then p is called a solution of the differential superordination
(1.2). An analytic function q is called a subordination of the

solutions of the differential superordination (1.2), if q � p

for all p satisfying (1.2). A univalent subordination ~q that sat-
isfies q � ~q for all subordinations q of (1.2) is said to be the

best subordination.

Definition 1.3 (see [3]). We denote by Q the class of functions
f that are analytic and injective on U n EðfÞ, where

EðfÞ ¼ n : n 2 @U and lim
z!n

fðzÞ ¼ 1
� �

;

and are such that f0ðnÞ–0ðn 2 @U n EðfÞÞ.

Let AnðpÞ denote the class of all analytic functions of the
form

fðzÞ ¼ zp þ
X1
k¼n

apþkz
pþk ðp; n 2 N; z 2 UÞ;

and let A1ðpÞ ¼ AðpÞ.
For f 2 AðpÞ, we denote by Dnþp�1 : AðpÞ ! AðpÞ the oper-

ator defined by

Dnþp�1fðzÞ ¼ zp

ð1� zÞnþp
� fðzÞ ðn > �pÞ

or, equivalently, by

Dnþp�1fðzÞ ¼ zpðzn�1fðzÞÞðnþp�1Þ

ðnþ p� 1Þ! ;

where n is any integer greater than �p and the symbol (\)
stands for the Hadamard product (or convolution). The oper-
ator Dnþp�1 with p= 1 was introduced by Ruscheweyh [4], and

Dnþp�1 was introduced by Goel and Sohi [5]. The operator
Dnþp�1 is called as the Ruscheweyh derivative of (n + p � 1)th
order.

Recently, analogous to Dnþp�1, Liu and Noor [6] introduced
an integral operator I n;p : AðpÞ ! AðpÞ as below.

Let fn,p(z) = zp/(1 � z)n+p(n > �p), and let fðyÞn;pðzÞ be
defined such that

fn;pðzÞ � fðyÞn;pðzÞ ¼
zp

ð1� zÞpþ1
:

Then

I n;pfðzÞ ¼ fðyÞn;pðzÞ � fðzÞ ¼
zp

ð1� zÞnþp
� �ðyÞ

� fðzÞ ðf 2 AðpÞÞ:

ð1:3Þ

We note that I 0;pfðzÞ ¼ zf0ðzÞ=p and I 1;pfðzÞ ¼ fðzÞ. Also, the
operator I n;p defined by (1.3) is called the Noor integral oper-
ator (n+ p � 1)-th order [6]. For p= 1, the operator

I n;1 � I n was introduced by Noor [7] and Noor and Noor
[8], which is an important operator in defining several classes
of analytic functions. In recent years, it has been shown that

Noor integral operator has fundamental and significant appli-
cations in analytic function theory. For the properties and
applications of the Noor integral operator, see, for example,
[9–13].

For real or complex numbers a, b, c other than 0, �1,
�2, � � � , the Gauss hypergeometric function 2F1(a,b;c;z) is de-
fined by

2F1ða; b; c; zÞ ¼
X1
k¼0

ðaÞkðbÞk
ðcÞk

zk

k!
; ð1:4Þ

where (m)k denotes the Pochhammer symbol defined, in terms

of Gamma function, by

ðmÞk ¼
Cðmþ kÞ

CðmÞ ¼
1 ðk ¼ 0Þ;
mðmþ 1Þ � � � ðmþ k� 1Þ ðk 2 NÞ:

�

Since the series in (1.4) converges absolutely for all z 2 U, so

that it represents an analytic function in U.
We now introduce a function flp;dða; b; cÞðzÞ defined by

flp;dða;b;cÞðzÞ¼ ð1�lþdÞzp2F1ða;b;c;zÞ
þðl�dÞz½zp2F1ða;b;c;zÞ�0

þldz2½zp2F1ða;b;c;zÞ�00ðp2N;l;dP 0;z2UÞ:

In its special case when p = 1 and d = 0, we obtain
fl1;0ða; b; cÞðzÞ ¼ flða; b; cÞðzÞ studied by Shukla and Shukla
[14].

On the other hand, we define a function ½flp;dða; b; cÞðzÞ�
ð�1Þ

by means of Hadamard product (or convolution):

flp;dða; b; cÞðzÞ � flp;dða; b; cÞðzÞ
h ið�1Þ

¼ zp

ð1� zÞkþp
ðl; d P 0; k > �pÞ;

which leads us to the following family of linear operators

I k;l
p;n;dða; b; cÞfðzÞ ¼ ½f

l
p;dða; b; cÞðzÞ�

ð�1Þ � fðzÞ; ð1:5Þ

where a, b, c are real numbers other than 0, �1, �2, � � � , and
f 2 AnðpÞ.

We observe that the operator I k;l
p;n;dða; b; cÞ generalizes sev-

eral previously studied familiar operators, and we will show
some of the interesting particular cases as follows.

(i) I k;l
1;1;0ða; b; cÞ ¼ I k

lða; b; cÞ, where I k
lða; b; cÞ is the Srivast-

ava et al. operator [15];
(ii) I k;0

p;n;0ða; b; cÞ ¼ I k
p;nða; b; cÞ, where the operator

I k
p;nða; b; cÞ was introduced by Fu and Liu [16];
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