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Abstract The main aim of the present work is to propose a new and simple algorithm for frac-

tional Zakharov–Kuznetsov equations by using homotopy perturbation transform method

(HPTM). The Zakharov–Kuznetsov equation was first derived for describing weakly nonlinear

ion-acoustic waves in strongly magnetized lossless plasma in two dimensions. The homotopy per-

turbation transform method is an innovative adjustment in Laplace transform algorithm (LTA)

and makes the calculation much simpler. HPTM is not limited to the small parameter, such as in

the classical perturbation method. The method gives an analytical solution in the form of a conver-

gent series with easily computable components, requiring no linearization or small perturbation.

The numerical solutions obtained by the proposed method indicate that the approach is easy to

implement and computationally very attractive.
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1. Introduction

In recent years, fractional differential equations have gained
importance and popularity, mainly due to its demonstrated
applications in numerous seemingly diverse fields of physics

and engineering. Many important phenomena in electromag-
netics, acoustics, viscoelasticity, electrochemistry and material
science, probability and statistics, electrochemistry of corro-

sion, chemical physics, and signal processing are well described
by differential equations of fractional order [1–15]. Hence,
great attention has been given to find solutions of fractional
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differential equations. In general, it is difficult to obtain an ex-
act solution for a fractional differential equation. So numerical
methods attracted the interest of researchers, the perturbation

method is one of these. But the perturbation methods have
some limitations e.g., the approximate solution involves series
of small parameters which poses difficulty since majority of

nonlinear problems have no small parameters at all. Although
appropriate choices of small parameters some time lead to
ideal solution but in most of the cases unsuitable choices lead

to serious effects in the solutions. The homotopy perturbation
method (HPM) was first introduced by researcher He in 1998
and was developed by him [16–18]. The homotopy perturba-
tion method was also studied by many authors to handle linear

and nonlinear equations arising in physics and engineering
[19–24]. In recent years, many authors have paid attention to
study the solutions of linear and nonlinear partial differential

equations by using various methods combined with the La-
place transform. Among these are Laplace decomposition
method (LDM) [25–28] and homotopy perturbation transform

method (HPTM) [29–31].
In this paper, we consider the following fractional Zakha-

rov–Kuznetsov equations (FZK(p, q, r)) of the form:

Db
t uþ aðupÞx þ bðuqÞxxx þ cðurÞxyy ¼ 0; ð1Þ

where u = u(x, y, t), b is parameter describing the order of the
fractional derivative ð0 < b 6 1Þ. a, b, and c are arbitrary con-
stants and p, q, and r are integers and p, q, r „ 0 governs the

behavior of weakly nonlinear ion acoustic waves in a plasma
comprising cold ions and hot isothermal electrons in the
presence of a uniform magnetic field [32,33]. The Zakharov–

Kuznetsov equation was first derived for describing weakly
nonlinear ion-acoustic waves in strongly magnetized lossless
plasma in two dimensions [34]. The FZK equations have been
studied previously by using VIM [35] and HPM [36].

In the present article, further we apply the homotopy pertur-
bation transformmethod (HPTM) to solve the FZK equations.
The HPTM is combined form of Laplace transform, HPM and

He’s polynomials. The advantage of this technique is its capa-
bility of combining two powerful methods for obtaining exact
and approximate analytical solutions for nonlinear equations.

It is worth mentioning that the proposed approach is capable
of reducing the volume of the computational work as compared
to the classical methods while still maintaining the high accu-

racy of the numerical result; the size reduction amounts to an
improvement of the performance of the approach.

Definition 1.1. The Laplace transform of function f(t)is defined
by

FðsÞ ¼ L½fðtÞ� ¼
Z 1

0

e�stfðtÞdt: ð2Þ

Definition 1.2. The Laplace transform L[f(t)] of the Riemann–
Liouville fractional integral is defined as [5]:

L Ibt fðtÞ
� �

¼ s�bFðsÞ: ð3Þ

Definition 1.3. The Laplace transform L[f(t)] of the Caputo
fractional derivative is defined as [5]:

L Db
t fðtÞ

� �
¼ sbFðsÞ �

Xm�1
k¼0

sðb�k�1Þf ðkÞð0Þ; m� 1 < b 6 m: ð4Þ

2. Basic Idea of newly homotopy perturbation transform method

To illustrate the basic idea of this method, we consider a
general fractional nonlinear nonhomogeneous partial differen-

tial equation with the initial conditions of the form:

Db
t uðx; tÞ þ Ruðx; tÞ þNuðx; tÞ ¼ gðx; tÞ; 0 < b � 1; ð5Þ

uðx; 0Þ ¼ hðxÞ; ð6Þ
where Db

t uðx; tÞ is the Caputo fractional derivative of the func-

tion u(x, t), R is the linear differential operator, N represents
the general nonlinear differential operator and g(x, t) is the
source term.

Applying the Laplace transform (denoted in this paper by
L) on both sides of Eq. (5), we get

L Db
t uðx; tÞ

� �
þ L½Ruðx; tÞ� þ L½Nuðx; tÞ� ¼ L½gðx; tÞ�: ð7Þ

Using the property of the Laplace transform, we have

L½uðx; tÞ� ¼ hðxÞ
s
þ 1

sb
L½gðx; tÞ� � 1

sb
L½Ruðx; tÞ�

� 1

sb
L½Nuðx; tÞ�: ð8Þ

Operating with the Laplace inverse on both sides of Eq. (8)
gives

uðx; tÞ ¼ Gðx; tÞ � L�1
1

sb
L½Ruðx; tÞ þNuðx; tÞ�

� �
; ð9Þ

where G(x, t) represents the term arising from the source term
and the prescribed initial conditions. Now we apply the HPM

uðx; tÞ ¼
X1
n¼0

pnunðx; tÞ; ð10Þ

and the nonlinear term can be decomposed as

Nuðx; tÞ ¼
X1
n¼0

pnHnðuÞ; ð11Þ

for some He’s polynomials Hn(u) [37,38] that are given by

Hnðu0; u1; . . . ; unÞ ¼
1

n!

@n

@pn
N
Xn
i¼0

piui

 !" #
p¼0

;

n ¼ 0; 1; 2; 3; . . . ð12Þ
Using Eqs. (10) and (11) in Eq. (9), we get

X1
n¼0

pnunðx;tÞ¼Gðx;tÞ�p L�1
1

sb
L R

X1
n¼0

pnunðx;tÞþ
X1
n¼0

pnHnðuÞ
" #" # !

;

ð13Þ
which is the coupling of the Laplace transform and the HPM
using He’s polynomials. Comparing the coefficients of like
powers of p, the following approximations are obtained.

p0 : u0ðx; tÞ ¼ Gðx; tÞ;

p1 : u1ðx; tÞ ¼ L�1
1

sb
L½Ru0ðx; tÞ þH0ðuÞ�

� �
;

p2 : u2ðx; tÞ ¼ L�1
1

sb
L½Ru1ðx; tÞ þH1ðuÞ�

� �
; ð14Þ

p3 : u3ðx; tÞ ¼ L�1
1

sb
L½Ru2ðx; tÞ þH2ðuÞ�

� �
:

Proceeding in this same manner, the rest of the components
un(x, t) can be completely obtained and the series solution is
thus entirely determined.
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