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Abstract In this paper, we investigate a mathematical model which takes account the cure of

infected cells and the loss of viral particles due to the absorption into uninfected cells. The global

stability of the model is determined by using the direct Lyapunov method for disease-free equilib-

rium, and the geometrical approach for chronic infection equilibrium.
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1. Introduction

The aim of this work is to study the dynamical behavior of the
following model describing the interaction between the suscep-

tible host cells ðxÞ, infected cells ðyÞ and free virus ðvÞ, this
model is formulated by the following nonlinear system of
differential equations:

_x ¼ k� dx� fðx; y; vÞvþ qy;

_y ¼ fðx; y; vÞv� ðaþ qÞy;
_v ¼ ky� uv� ifðx; y; vÞv;

ð1Þ

where the susceptible host cells are produced at a rate k, die at
a rate dx and become infected by virus at a rate fðx; y; vÞv.
Infected cells may be killed because of viral or immune effects,
or they may be lost by noncytolytic elimination of the cccDNA
in their nucleus. The loss rate of infected cells is given by aþ q,
where a is the death rate of infected cells and q is the reversion
rate into the uninfected state. The term qy into first equation of
(1) gives a measure of the uninfected cells which are created

through ‘‘cure’’, per unit time. Recently, this cure of infected
cells is considered by several works [1–6]. Finally, free virus
is produced by infected cells at a rate ky, decays at a rate uv

and the parameter i takes only the values 0 or 1. When i ¼ 0
corresponds to the system treated by Hattaf et al. in [6], and
i ¼ 1 takes account the loss of viral particles when it enters
the target cells. Note that, when a pathogen enters an
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uninfected cell, the number of pathogens in the blood de-

creases by one. This is called the absorption effect, which is
considered in [9–11] and is ignored by many authors such as
[1–8]. As in [6–8], we assume that the function fðx; y; vÞ is

continuously differentiable in the interior of R3
þ and satisfies:

fð0; y; vÞ ¼ 0; for all y P 0 and v P 0; ðH1Þ

@f

@x
ðx; y; vÞ > 0; for all x > 0; y P 0 and v P 0; ðH2Þ

@f

@y
ðx; y; vÞ 6 0 and

@f

@v
ðx; y; vÞ 6 0; 8 x; y; v P 0: ðH3Þ

The rest of our paper is organized as follows. Section 2 deals
with some preliminary results concerning positivity and bound-

edness of solutions, basic reproduction number and existence of
equilibria. In Section 3, we discuss the stability of equilibria.
The paper ends with some applications in Section 4.

2. Preliminaries

In this section, we establish the positivity and boundedness of
solutions, basic reproduction number and existence of equilibria.

2.1. Positive invariance and boundedness

Theorem 2.1. The octant R3
þ ¼ fðx; y; vÞ 2 R3 : x P 0; y

P 0; v P 0g is positively invariant with respect (1). Moreover,
all solutions of (1) are uniformly bounded in the compact subset
C ¼ ðx; y; vÞ 2 R3

þ : xþ y 6 k
d ; v 6

kk
ud

� �
, where d ¼ minfa; dg.

Proof. The positive invariance of the positive orthant is trivial.

It remains to show that the system (1) is uniformly bounded.
Let xðtÞ; yðtÞ; vðtÞð Þ be any solution with positive initial condi-
tions ðx0; y0; v0Þ. Adding the first two equations of the system

(1) gives, d
dt
ðxþ yÞ ¼ k� dx� ay 6 k� dðxþ yÞ, with

d ¼ minfa; dg. Then we obtain that lim supt!1ðxþ yÞ 6 k
d.

On the other hand, from the third equation of the system, it

is easy to see that lim supt!1v 6
kk
ud. Hence, all solutions of

the system (1) which start in R3
þ are eventually confined in

the region C. This completes the proof. h

2.2. Basic reproduction number and equilibria

By a simple calculation, system (1) has always one disease-free
equilibrium Ef

k
d
; 0; 0

� �
. Therefore, the basic reproduction num-

ber of (1) is given by

R0 ¼
ðk� ðaþ qÞiÞf k

d
; 0; 0

� �
uðaþ qÞ : ð2Þ

Using the same technique in [6], we deduce that there exists a
unique endemic equilibrium when R0 > 1. Hence, we have the
following result.

Theorem 2.2.

(i) If R0 6 1, then the system (1) has a unique disease-free
equilibrium of the form Ef

k
d ; 0; 0
� �

.

(ii) If R0 > 1, the disease-free equilibrium is still present and

the system (1) has a unique chronic infection equilibrium
of the form E�ðx�; y�; v�Þ with x� 2 0; k

d

� �
; y� > 0 and

v� > 0.

3. Local and global stability of equilibria

The Jacobian matrix of (1) at an arbitrary point is given by

J ¼

�d� @f
@x
v � @f

@y
vþ q � @f

@v
v� f

@f
@x
v @f

@y
v� ðaþ qÞ @f

@v
vþ f

�i @f
@x
v k� i @f

@y
v �u� i fþ @f

@v
v

� �

0
BB@

1
CCA: ð3Þ

Based on Jacobine matrix approach by evaluating (3) at Ef and
E�, we can obtain the following results.

Theorem 3.1. The disease-free equilibrium Ef is locally asymp-

totically stable if R0 < 1 and it is unstable if R0 > 1.

Theorem 3.2. Suppose that R0 > 1. If i ¼ 0 or if i ¼ 1 and the
function f satisfies the following hypothesis

fðx; y; vÞ þ v
@f

@v

� �
P 0; for all x; y; v P 0; ðH4Þ

then the chronic infection equilibrium E� is locally asymptoti-
cally stable.

Remark 3.3. The assumption (H4) is verified by different types
of the incidence rate including the mass action, the standard

incidence, the saturation incidence, Beddington-DeAngelis
incidence function, Crowley-Martin incidence function and
the more generalized incidence function proposed by Hattaf

el al. (see Section 5 in [8]).

Based on the following Lyapunov functional

VðtÞ ¼ k
aþq yðtÞ þ vðtÞ, it is not hard to establish the following

theorem.

Theorem 3.4. Ef is globally asymptotically stable in C if a P d
and R0 6 1.

In order to establish the global stability of the chronic infec-
tion equilibrium E� when R0 > 1, we need first to show the fol-
lowing lemma.

Lemma 3.5. If R0 > 1, the system (1) is uniformly persistent.

Proof. This lemma follows from a uniform persistence result,
Theorem 4.3 in [12]. To show that system (1) satisfies all the
conditions of Theorem 4.3 in [12] if R0 > 1, we choose
X ¼ R3 and the set E ¼ C. The maximal invariant set M on

the boundary @C is the singleton Ef and is isolated. By Theo-
rem 4.3 in [12], we can see that the uniform persistence of sys-
tem (1) is equivalent to the unstability of the disease-free

equilibrium Ef. Hence, by Theorem 3.1, we know if R0 > 1,
the system (1) is uniform persistence. h

Next, we establish a set of conditions which are sufficient
for the global stability of the chronic infection equilibrium
E�. According to Lemma 3.5, we know if R0 > 1, the system

(1) is uniform persistence. Hence, there exists a compact
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