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Abstract In this work we introduce a discretization process to discretize fractional-order differen-

tial equations. First of all, we consider the fractional-order Logistic differential equation then, we

consider the corresponding fractional-order Logistic differential equation with piecewise constant

arguments and we apply the proposed discretization on it. The stability of the fixed points of the

resultant dynamical system and the Lyapunov exponent are investigated. Finally, we study some

dynamic behavior of the resultant systems such as bifurcation and chaos.
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1. Introduction

Chaotic systems have been a focal point of renewed interest for
many researchers in the past few decades. Such nonlinear sys-

tems can occur in various natural and man-made systems, and
are known to have great sensitivity to initial conditions. In re-
cent years differential equations with fractional-order have at-

tracted many researchers because of their applications in many
areas of science and engineering. Analytical and numerical
techniques have been implemented to study such equations.

The fractional calculus has allowed the operations of integra-

tion and differentiation to be applied upon any fractional-or-
der. For the existence of solutions for fractional differential
equations, one can see [1,2].

About the development of existence theorems for fractional
functional differential equations, many contributions existed
and can be referred to [3–5]. Many applications of fractional

calculus amounts to replace the time derivative in a given evo-
lution equation by a derivative of fractional-order.

Recalling the basic definitions (Caputo) and properties of
fractional-order differentiation and itegration

Definition 1. The fractional integral of order b 2 Rþ of the
function f(t), t> 0 is defined by

IbfðtÞ ¼
Z t

0

ðt� sÞb�1

CðbÞ fðsÞds;

and the fractional derivative of order a 2 (n � 1,n) of f(t),
t> 0 is defined by
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DafðtÞ ¼ In�aDnfðtÞ; D ¼ d

dt
:

To solve fractional-order differential equations there are

two famous methods: frequency domain methods [6] and time
domain methods [7]. In recent years it has been shown that the
second method is more effective because the first method is not

always reliable in detecting chaos [8,9].

Often it is not desirable to solve a differential equation ana-

lytically, and one turns to numerical or computational
methods.

In [10], a numerical method for nonlinear fractional-order

differential equations with constant or time-varying delay
was devised. It should be noticed that the fractional differen-
tial equations tend to lower the dimensionality of the differen-
tial equations in question, however, introducing delay in

differential equations makes it infinite dimensional. So, even
a single ordinary differential equation with delay could display
chaos.

On the other hand, some examples of dynamical systems
generated by piecewise constant arguments have been studied
in [11–14]. Here we propose a discretization process to obtain

the discrete version of the system under study. Mean while, we
apply discretization process to discretize the fractional-order
Logistic differential equation.

A lot of differential equations with Caputo fractional deriv-

ative were simulated by the Predictor-Corrector scheme, such
as the fractional Chua system, the fractional Chen system,
and Lorenz system. We should note that Predictor-Corrector

method is an approximation for the fractional-order integra-
tion, however, our approach is an approximation for the right
hand side. For applications of fractional-order differential

equations one can see [15–17], [21], and [23–27].

2. Discretization process

Consider the fractional-order Logistic differential equation gi-
ven by

DaxðtÞ ¼ qxðtÞð1� xðtÞÞ; t > 0; ð2:1Þ

with the initial condition x(0) = xo.

The main purpose of this section is to introduce a discreti-
zation process to discretize the counterpart of (2.1) with piece-
wise constant arguments

DaxðtÞ ¼ qx
t

r

h i
r

� �
1� x

t

r

h i
r

� �� �
; ð2:2Þ

with the initial condition x(0) = xo.

We proceed like the step method mentioned in [20] and [22].
The steps of the discretization process is as follows

(1) Let t 2 [0, r), then t
r 2 ½0; 1Þ. So, we get

DaxðtÞ ¼ qxoð1� xoÞ; t 2 ½0; rÞ;

and the solution of (2.2) is given by

x1ðtÞ ¼ xo þ Iaqxoð1� xoÞ ¼ xo þ qxoð1� xoÞ
Z t

0

ðt� sÞa�1

CðaÞ ds

¼ xo þ qxoð1� xoÞ
ta

Cð1þ aÞ

(2) Let t 2 [r, 2r), then t
r 2 ½1; 2Þ. So, we get

DaxðtÞ ¼ qx1ð1� x1Þ; t 2 ½r; 2rÞ;

and the solution of (2.2) is given by

x2ðtÞ ¼ x1ðrÞ þ Iarqx1ð1� x1Þ

¼ x1ðrÞ þ qx1ð1� x1Þ
Z t

r

ðt� sÞa�1

CðaÞ ds

¼ x1ðrÞ þ qx1ðrÞð1� x1ðrÞÞ
ðt� rÞa

Cð1þ aÞ

Repeating the process we can easily deduce that the solution of

(2.2) is given by

xnþ1ðtÞ ¼ xnðnrÞ þ
ðt� nrÞa

Cð1þ aÞ qxnðnrÞð1� xnðnrÞÞ; t

2 ½nr; ðnþ 1ÞrÞ:

Let t fi (n+ 1)r, we obtain the discretization

xnþ1ððnþ 1ÞrÞ ¼ xnðnrÞ þ
ra

Cð1þ aÞqxnðnrÞð1� xnðnrÞÞ;

That is

xnþ1 ¼ xn þ
ra

Cð1þ aÞqxnð1� xnÞ: ð2:3Þ

On a similar manner, consider the corresponding equation of

(2.1) with piecewise constant arguments

DaxðtÞ ¼ qx
t

r

h i
r

� �
1� x

t� r

r

h i
r

� �� �
; ð2:4Þ

with the initial condition x(0) = xo.So, we obtain the second
order discretization

xnþ1 ¼ xn þ
ra

Cð1þ aÞqxnð1� xn�1Þ: ð2:5Þ

3. Fixed points and their asymptotic stability

Now we study the stability of the fixed points of the Eq.
(2.3)which has two fixed points namely, 0 and 1 given by solv-

ing the equation

x ¼ xþ ra

Cð1þ aÞqxð1� xÞ:

To study the stability of these fixed points we relay on the
following theorem

Theorem 1 [18]. Let f be a smooth map on R, and assume that

x0 is a fixed point of f.

1. If ––f0(x0)–– < 1, then x0 is stable.

2. If ––f0(x0)–– > 1, then x0 is unstable.

In case of the first fixed point ‘0’, it is stable if
1þ ra

Cð1þaÞ q
��� ��� < 1 which is impossible. That is the origin is
unstable. For the second fixed point ‘1’, it is stable if

0 < q <
2ðCð1þ aÞÞ

ra
: ð3:1Þ

On the other hand, to study the stability of the fixed points
of Eq. (2.5) we first split it into two equations as follows
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