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Abstract In this paper, we obtain weak and strong convergence theorems of an iterative sequences

associated with three finite families of multivalued nonexpansive mappings under some conditions

in a uniformly convex real Banach space. Our results extend and improve several known results.
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1. Introduction and preliminaries

Let E be a Banach space with dim E P 2, the modulus of

convexity of E is the function dE : ð0; 2� ! ½0; 1� defined by

dEð�Þ ¼ inf 1� 1

2
kxþ yk : kxk ¼ 1; kyk ¼ 1; kx� yk ¼ �

� �
:

E is uniformly convex if and only if with dEð�Þ > 0 for all
� 2 ð0; 2�.

A subset K is called proximinal if for each x 2 E, there

exists an element k 2 K such that

dðx; kÞ ¼ inffkx� yk : y 2 Kg ¼ dðx;KÞ:

It is known that a weakly compact convex subsets of a Banach
space and closed convex subsets of a uniformly convex Banach

space are proximinal. We shall denote the family of nonempty
bounded proximinal subsets of K by PðKÞ;CðKÞ the family of
nonempty compact subsets of K, and CBðKÞ be the class of all
nonempty bounded and closed subsets of K, Consistent with
[1].

Let H be a Hausdorff metric induced by the metric d of K,
given by

HðA;BÞ ¼ max sup
x2A

dðx;BÞ; sup
y2B

dðy;AÞ
� �

;

for every A;B 2 CBðKÞ. It is obvious that PðKÞ 2 CBðKÞ.
A multivalued mapping T : K! PðKÞ is said to be a con-

traction if there exists a constant k 2 ½0; 1Þ such that for any

x; y 2 K,

HðTx;TyÞ 6 kkx� yk;

and T is said to be nonexpansive if

HðTx;TyÞ 6 kx� yk;
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for all x; y 2 K. A point x 2 K is called a fixed point of T if

x 2 Tx. Throughout the paper N denotes the set of all natural
numbers and FðTÞ the set of fixed points of T.

Let us recall the following definitions.

Definition 1.1 [2]. A Banach space E is said to satisfy Opial’s

condition if for any sequence fxng in E; xn * x (* denotes
weak convergence) implies that lim supn!1kxn � xk <
lim supn!1kxn � yk for all y 2 E with y–x. Examples of

Banach spaces satisfying this condition are Hilbert spaces and
all 1 < p <1.

Definition 1.2 [3]. The mapping T : K! K where K a subset
of E, are said to satisfy condition ðAÞ if there exists a nonde-

creasing function f : ½0;1Þ ! ½0;1Þ with fð0Þ ¼ 0; fðrÞ > 0
for all r 2 ð0;1Þ such that either dðx;TxÞP fðdðx;FðTÞÞ for
all x 2 K, where dðx;FðTÞÞ ¼ inffkx� pk : p 2 FðTÞg

The following is the multivalued version of condition (Á);

Definition 1.3. The three finite families of multivalued nonex-

pansive mappings Ti;Si;Ri : K! CBðKÞ; ði ¼ 1; 2; 3; . . . ; kÞ,
where K a subset of E, are said to satisfy condition ð �AÞ if
there exists a nondecreasing function f : ½0;1Þ ! ½0;1Þ with
fð0Þ ¼ 0; fðrÞ > 0 for all r 2 ð0;1Þ such that dðx;TixÞP
fðdðx;FÞ or dðx;SixÞP fðdðx;FÞ or dðx;RixÞP fðdðx;FÞ for

all x 2 K, where F ¼
Tk
i¼1

FðTiÞ
� �T Tk

i¼1
FðSiÞ

� �T Tk
i¼1

FðRiÞ
� �

,

the set of all common fixed points of the mappings Ti;Si and

Ri.

Definition 1.4 [4]. A map T : K! CBðKÞ, is called hemicom-
pact if, for any sequence fxng in E such that dðxn;TxnÞ ! 0

as n!1, there exists a subsequence fxnrg of fxng such that
xnr ! p 2 K. We note that if K is compact, then every multi-
valued mapping T : K! CBðKÞ is hemicompact.

Next we state the following useful lemma.

Lemma 1.1 [5]. Let E be a uniformly convex Banach space,
r > 0 a positive number and let Brð0Þ ¼ fx 2 E : kxk 6 rg.
Then, for any given sequence fxig � Brð0Þ and for any given

sequence ki 2 ½0; 1� with
Pk

i¼0ki ¼ 1, there exists a continuous

strictly increasing and convex function u : ½0; 2rÞ ! R;uð0Þ ¼ 0

such that for any positive integers m; j with m < j, the following
inequality holds:

Xk
i¼1

kixi

�����
�����
2

6

Xk
i¼1

kikxik2 � kmkjuðkxm � xjkÞ:

The study of fixed points for multivalued contractions and
nonexpansive mappings using the Hausdorff metric was initi-
ated by Markin [6] and Nadler [1]. Later, an interesting and

rich fixed point theory for such maps was developed which
has applications in control theory, convex optimization, differ-
ential inclusion and economics.

The theory of multivalued nonexpansive mappings is hard-
er than the corresponding theory of single valued nonexpan-
sive mappings. Different iterative processes have been used

to approximate the fixed points of multivalued nonexpansive
mappings. In particular in 2005, Sastry and Babu [7] proved

the convergence of Mann and Ishikawa iteration process for
multivalued mapping T with a fixed point p converge to a fixed
point q of T under certain conditions. They also claimed that

the fixed point q may be different from p. Under some condi-
tions Panyanak [8] extended result of Sastry and Babu to uni-
formly convex Banach spaces. Song and Wang [9] noted that

there was a gap in the proof of the main result in [8]. They fur-
ther revised the gap and also gave the affirmative answer to
Panyanak’s open question.

Abbas et al. [10] established weak and strong convergence
theorems of two multivalued nonexpansive mappings in a uni-
formly convex real Banach space by one-step iterative process
to approximate common fixed points under some basic bound-

ary conditions. Rashwan and Altwqi [11] introduced a new
one-step iterative process to approximate the common fixed
points of three multivalued nonexpansive mappings.

Recently Eslamian and Abkar [12] introduced a new one-
step iterative process for approximate the common fixed points
of finitely many multivalued mappings satisfying some condi-

tions. They proved some weak and strong convergence theo-
rems for such iterative process in uniformly convex Banach
spaces as follows. Let E be a Banach space, K be a nonempty

convex subset of E and Ti : K! CBðKÞ ði ¼ 1; 2; . . . ;mÞ be fi-
nitely many given mappings. Then, for x0 2 K and they
defined:

xnþ1 ¼ an;0xn þ
Xm
i¼1

an;izn;i; n 2 N; ð1:1Þ

where zn;i 2 TiðxnÞ and fan;ig are sequences of numbers in ½0; 1�
such that for every natural number n 2 N and

Pm
i¼0an;i ¼ 1.

We now introduce the following iteration scheme which
attend (1.1). Let E be Banach space, K be a nonempty closed
convex subset of E and let Ti;Si;Ri : K! CBðKÞ; ði ¼ 1; 2;
. . . ; kÞ be three finite families of multivalued mappings. Then

for x0 2 K, define the sequences fxng1n¼1; fyng
1
n¼1 and fzng1n¼1

by:

xnþ1 ¼ an;0xn þ
Xk
i¼1

an;iun;i;

yn ¼ bn;0xn þ
Xk
i¼1

bn;ivn;i; n 2 N

zn ¼ cn;0xn þ
Xk
i¼1

cn;iwn;i;

ð1:2Þ

where un;i 2 Tiyn; vn;i 2 Sizn;wn;i 2 Rixn and fan;ig; fbn;ig and

fcn;ig are sequence of numbers in ½0; 1� satisfying
Pk

i¼0an;i ¼Pk
i¼0bn;i ¼

Pk
i¼0cn;i ¼ 1.

Remark 1.1

1. If bn;0 ¼ 1 cn;0 ¼ 1 and
Pk

i¼1bn;i ¼
Pk

i¼1cn;i � 0. The itera-
tive scheme (1.2) reduce to iterative scheme defined by (1.1).

2. If
Pk

i¼2an;i ¼
Pk

i¼2bn;i ¼
Pk

i¼2cn;i � 0. The iterative scheme

(1.2) reduce to Noor iterative scheme defined by

xnþ1 ¼ an;0xn þ an;1un;1;

yn ¼ bn;0xn þ bn;1vn;1; n 2 N

zn ¼ cn;0xn þ cn;1wn;1;

ð1:3Þ

where un;1 2 T1yn, vn;1 2 S1zn and wn;1 2 R1xn.
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