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Abstract In 2000 [1], Zahran introduced the concept of regular open sets in fuzzifying topology.

In 2004 [2], Sayed and Zahran, gave an example to illustrate that the statements:

(1) � A 2 Rs ! A 2 s (Lemma 2.2 [1]); and
(2) � ðA 2 Rs ^ B 2 RsÞ ! A \ B 2 Rs (Theorem 2.4 [1]),

are incorrect. In the present paper we redefine this concept to make these statements correct. Fur-

thermore, by making use of our definition of regular open sets, the concepts of almost continuity

and d-continuity are introduced and studied in fuzzifying topology.
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1. Introduction

In classical and fuzzy topology, Almost continuity, d-continuity
[3–5] have been defined and their properties have been obtained.

In 1991 [6], Ying used the semantics of fuzzy logic to pro-

pose a topology whose logical fundament is fuzzy. Proceeding
in this direction many papers have been written [1,7–9]. The
concept of regular open set in fuzzifying topology was given
in 2000 [1] by Zahran. In 2004 [2], Sayed and Zahran illustrate

by a counterexample that the statements:

(1) sðAÞP RsðAÞ (Lemma 2.2 [1]); and

(2) ðRsðAÞ ^ RsðBÞÞ 6 RsðA \ BÞ (Theorem 2.4 [1]),

are incorrect. In the present paper we redefine the concept
of regular open sets in fuzzifying topology to make these state-

ments correct. Furthermore by making use of this concept we
introduce and study the almost continuity and d-continuity in
fuzzifying topology.

For the definition of a fuzzifying topology and some of its
basic concepts used in this paper we refer to [6,8,9]. For the
definitions of the family of semi-open sets and the family of

semi-closed sets in fuzzifying topology we refer to [7].
However we recall here some of the basic concepts used in

this paper.

Definition 1.1. Let ðX; sÞ be a fuzzifying topological space.

Then

(1) The family of all closed sets in X is denoted by F s or F if

there is no confusion and defined as: F sðAÞ ¼
sðX � AÞ 8 A 2 2X , where X � A is the complement of A.

(2) The neighborhood system of x at a subset A of X is

denoted by /ðs;xÞðAÞ, and defined as:
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/ðs;xÞðAÞ ¼
_

x2B#A

sðBÞ 8 A 2 2X:

(3) The closure (resp. interior) of A is denoted by clsðAÞ,
(resp. intsðAÞ,) and defined as:

clsðAÞðxÞ ¼ 1� /ðs;xÞðX� AÞðresp: intsðAÞðxÞ ¼ /ðs;xÞðAÞÞ 8 A

2 2X; 8 x 2 X:

(4) Let f 2 IX , where I ¼ ½0; 1�. Then
(a) The closure of f is denoted by fclsðf Þ, and defined

as:

fclsðfÞðxÞ ¼
_

a2½0;1�
ðfðxÞ ^ clsðfaÞÞðxÞ 8 x 2 X; and

(b) The interior of f is denoted bygintsðf Þ, and defined
as:

gintsðfÞ ¼ 1�fclsð1� fÞ:

(5) The family of semi-open sets is denoted by Ss, and

defined as:

SsðAÞ ¼
^
x2A

fclsðintsðAÞÞðxÞ 8 A 2 2X:

(6) The family of semi-closed sets is denoted by SF, and
defined as:

SFðAÞ ¼ SsðX� AÞ 8 A 2 2X:

(7) The degree of the convergence of a net S in X to x 2 X is

denoted by S.sx, and defined as:

S.sx ¼
^
S A

ð1� /ðs;xÞðAÞÞ

8 S 2 NðXÞ; 8 x 2 X, where S A means S almost in A and

NðXÞ denoted the set of all nets in X.

Definition 1.2. Let f; g 2 IX. The fuzzy inclusion of f in g is

denoted by ½½f; g½½, and defined as:

½½f; g½½¼
^
x2X
ðfðxÞ ! gðxÞÞ:

Note, that ‘‘!’’ is defined by: a! b ¼ minð1; 1� a
þbÞ a; b 2 I.

2. Regular open sets and d-open sets

Definition 2.1. Let ðX; sÞ be a fuzzifying topological space.
Then

(1) The family of all regular open sets is denoted by
Rs 2 I ð2

X Þ and defined as follows:

RsðAÞ ¼ sðAÞ ^ SFðAÞ:

(2) The family of all regular closed sets is denoted by

RF 2 I ð2
X Þ and defined as follows:

RFðAÞ ¼ RsðX� AÞ 8 A 2 2X:

Theorem 2.1. Let ðX; sÞ be a fuzzifying topological space. Then

(1) (a) RsðX Þ ¼ 1;Rsð/Þ ¼ 1;
(b) RsðA \ BÞP RsðAÞ ^ RsðBÞ;
(c) sðAÞP RsðAÞ; SF ðAÞP RsðAÞ;

(2) (a) RF ðX Þ ¼ 1;RF ð/Þ ¼ 1;
(b) RF ðA [ BÞP RF ðAÞ ^ RF ðBÞ;
(c) F ðAÞP RF ðAÞ; SsðAÞP RF ðAÞ;
(d) RF ðAÞ ¼ F ðAÞ ^ SsðAÞ.

Proof. We just prove (1) (b). From Theorem 3.2 (1) (b) [7], we

have

RsðA \ BÞ ¼ sðA \ BÞ ^ SFðA \ BÞ
P sðAÞ ^ sðBÞ ^ SFðAÞ ^ SFðBÞ ¼ RsðAÞ ^ RsðBÞ:

The other statements are clear. h

In 2004 [2], Sayed and Zahran illustrate by the following
example that the statements:

(1) sðAÞP RsðAÞ (Lemma 2.2 [1]); and
(2) ðRsðAÞ ^ RsðBÞÞ 6 RsðA \ BÞ (Theorem 2.4 [1]), are

incorrect.

Example 2.1. Let X ¼ fa; b; cg and s be a fuzzifying topology

on X defined as sðXÞ ¼ sð;Þ ¼ sðfagÞ ¼ sðfa; cgÞ ¼ 1,

sðfbgÞ ¼ sðfa; bgÞ ¼ 0 and sðfcgÞ ¼ sðfb; cgÞ ¼ 1
8.

Sayed and Zahran have obtained the regular openness de-

gree of every A 2 2X according to the definition of regular
open in form RsðAÞ ¼ ðA � intsðclsðAÞÞÞ as follows:

RsðXÞ ¼ Rsð;Þ ¼ 1; RsðfagÞ ¼ RsðfcgÞ ¼ Rsðfa; bgÞ ¼ Rs
ðfb; cgÞ ¼ 1

8
and RsðfbgÞ ¼ Rsðfa; cgÞ ¼ 0. Therefore, as we

see Rsðfa; bgÞ > sðfa; bgÞ and Rsðfa; bg \ fb; cgÞ < Rs
ðfa; bgÞ \ Rsðfb; cgÞ.

Now, we obtain the regular openness degree of every
A 2 2X according to the definition of regular open in form
RsðAÞ ¼ sðAÞ ^ SFðAÞ as follows:

Example 2.2. Let X ¼ fa; b; cg and s be a fuzzifying topology

on X that defined in Example 2.1. So, SFðXÞ ¼
SFð;Þ ¼ SFðfbgÞ ¼ 1, SFðfagÞ ¼ SFðfa; bgÞ ¼ SFðfa; cgÞ ¼ 0

and SFðfcgÞ ¼ SFðfb; cgÞ ¼ 7
8. Therefore, as we see RsðXÞ ¼

Rsð;Þ ¼ 1, RsðfagÞ ¼ RsðfbgÞ ¼ Rsðfa; bgÞ ¼ Rsðfa; cgÞ ¼ 0

and RsðfcgÞ ¼ Rsðfb; cgÞ ¼ 1
8. Thus RsðAÞ 6 sðAÞ for every

A 2 2X and RsðAÞ \ RsðBÞ 6 RsðA \ BÞ for every A;B 2 2X.

Definition 2.2. Let ðX; sÞ be a fuzzifying topological space and

let x 2 X. The d-neighborhood system of x is denoted by

d/ðs;xÞ 2 Ið2
XÞ and defined as follows:

d/ðs;xÞðAÞ ¼
_

x2B#A

RsðBÞ 8 A 2 2X:
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