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Abstract This article presents a numerical algorithm using the Meshless Local Petrov-Galerkin

(MLPG) method for the incompressible Navier–Stokes equations. To deal with time derivatives,

the forward time differences are employed yielding the Poisson’s equation. The MLPG method with

the moving least-square (MLS) approximation for trial function is chosen to solve the Poisson’s

equation. In numerical examples, the local symmetric weak form (LSWF) and the local unsymmet-

ric weak form (LUSWF) with a classical Gaussian weight and an improved Gaussian weight on

both regular and irregular nodes are demonstrated. It is found that LSWF1 with a classical

Gaussian weight order 2 gives the most accurate result.
ª 2013 Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society.

1. Introduction

Incompressible Navier–Stokes flow in two dimensions is one of

several major problems in fluid mechanics that have been

extensively studied both theoretically and numerically. In
general, the formulation of primitive variables is popularly

employed for the incompressible Navier–Stokes equation but
it has a limitation in approximating the velocity and the pres-
sure. The finite volume method (FVM) and finite element

method (FEM) have been widely applied to solve the
incompressible Navier–Stokes flow problems. However, it is
well-known that these methods depend strongly on the mesh

properties. In computing problems with irregular complex
geometries using these methods, mesh generation is a far more
time-consuming and expensive task than solution of the partial
differential equations (PDEs), particularly in three dimen-

sional (3D) cases. To overcome such a problem, meshless
methods, a new numerical method class have been developed.

Meshless methods were established with the objective of

eliminating the requirement of mesh generation step, which
is time-consuming and burdensome, in FEM. Owing to these
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reasons, meshless methods have received much attention as a
number of meshless methods have been introduced by different
authors. These include smooth particle hydrodynamics (SPH)

[1,2], diffuse element method (DEM) [3], element-free Galerkin
(EFG) [4], reproducing kernel particle method (RKPM) [5],
finite point method (FPM) [6], partition of unity method

(PU) [7], boundary node method (BNM) [8], local boundary
integral equation (LBIE) [9], meshless local Petrov-Galerkin
method (MLPG) [10], meshless regular local boundary integral

equation (MRLBIE) [11], finite cloud method (FCM) [12],
point interpolation method (PIM) [13], least-squares colloca-
tion meshless method (LSCM) [14], etc. The meshless local
Petrov-Galerkin (MLPG) method is a truly meshless method,

which requires no elements or background cells, for either
the interpolation or the integration purposes. The concept of
MLPG was first proposed by Atluri and Zhu [10], and later

discussed in depth in Atluri and Shen [15]. The most significant
difference between this method and the finite element method
or any other meshless method is that the local weak forms are

generated on overlapping local sub-domains, instead of using
the global weak form. Integration of the weak form is per-
formed in local sub-domains with simple geometrical shapes,

therefore no elements or background cells are necessary either
for interpolation purposes or for integration purposes. The
MLPG approach is also different from the truly meshless
method based on the local boundary integral equation (LBIE)

method, because there are no singular integrals in the MLPG
method. This method is characterized as meshless since distrib-
uted nodal points, covering the domain of interest, are

employed.
Remarkable successes of the MLPG method in computa-

tional mechanics have been reported in recent years. The first

article applying MLPG method to compute convection-diffu-
sion and incompressible flow problems was by Lin and Atluri
[16]. In their work, two kinds of upwind schemes were

constructed to overcome oscillations produced by convection
term. They applied upwind schemes to solve the incompress-
ible flow problem based on the primitive variable formulation
and added the perturbation term to continuity equation to sat-

isfy the Babǔka-Brezzi condition. But when these schemes
were applied to compute the high Reynolds number problems,
the parameter of perturbation term was difficult to determine

and it also suffered from the convergent difficulty. Wu et al.
[17] applied MLPG to solve incompressible flow problems with
vorticity-stream function method without addressing the

stability problem. One year later, they applied MLPG to solve
two-dimensional (2D) incompressible fluid flow and heat
transfer problems with benchmark solutions. The streamline
upwind Petrov-Galerkin method is applied to overcome oscil-

lation velocity field and mixed formulation is employed to sat-
isfy the Babǔka-Brezzi condition. The results show that SUPG
method gives a convergent solution for high Reynolds number.

Sanyasiraju and Chandhini [18] developed a local RBF
gridfree scheme to solve unsteady incompressible Navier–
Stokes equations for primitive variables. This novel fractional

step algorithm has been proposed to achieve velocity-pressure
decoupling, in which it has been validated over various
problems.

In the present paper, the meshless local Petrov-Galerkin
method with MLS interpolation scheme is applied to develop
an algorithm for solving the unsteady incompressible Na-
vier–Stokes flow problem.

2. The moving least-square (MLS) approximation for trial

function

The moving least-square (MLS) is one of these interpolation

schemes with a reasonable accuracy. Consider a sub-domain
Xx, which is defined as the neighborhood of a point x and
denoted as domain of definition of MLS approximation for

the trial function at point x. To approximate the distribution
of function un(x) = u(x, tn) in Xx, over a number of randomly
located nodes xi, i = 1, 2, . . ., N. The moving least-squares
(MLS) approximation unhðxÞ of u

n, "x 2 Xx, can be defined by

unh ¼ pTðxÞanðxÞ; 8x 2 Xx; ð1Þ

where p(x) is a vector of basis function

pTðxÞ ¼ ½p1ðxÞ; p2ðxÞ; . . . ; pmðxÞ�;

where m is the number of the basis functions. Usually the
complete monomial basis is used to ensure the consistency of

the approximations, whereby different types of the polynomi-
als may be used. Depending on the problem, other type of
functions may also be employed in order to enhance the solu-
tions. For a two-dimensional (2D) case used in this paper, the

complete monomial basis are defined as follows:

� Linear basis

pTðxÞ ¼ ½1; x; y�;

� Quadratic basis

pTðxÞ ¼ ½1; x; y; x2; xy; y2�;

where x ¼ ðx; yÞ 2 R2 and the term of the complete 2D ba-
sis may be obtained by employing the Pascal triangle. For the
polynomial basis, the total number of terms is related to the

order of the basis by expression m ¼ ðlþ1Þðlþ2Þ
2

with l as the order
of the basis. The vector an(x) contains the unknown
coefficients

anðxÞ ¼ ½an1ðxÞ; an2ðxÞ; an3ðxÞ; . . . ; anmðxÞ�
T
;

which are the functions of x, i.e. they have to be calculated for
each point x. The vector an(x) is determined by means of the
discrete weighted L2 norm, defined as follows:

JðanðxÞÞ ¼
XN
i¼1

wiðxÞ½pTðxiÞanðxÞ � ûni �
2
; ð2Þ

where wi(x) is a weight function associated with the node i,
wi(x) > 0 for all x in the support of wi(x), xi denotes the values
of x at node i, N is a number of nodes in Xx for which
wi(x) > 0. Here it should be noted that ûni ; i ¼ 1; 2; . . . ;N in

Eq. (2) are the fictitious nodes and not the actual nodes of
unknown trial function unhðxÞ. The minimization of J(an(x))
leads to the following system of equations

AðxÞanðxÞ ¼ BðxÞûn; ð3Þ

where,

A ¼
XN
i¼1

wiðxÞpðxiÞpTðxiÞ

the matrix B is defined as

B ¼ ½w1ðxÞpðx1Þ; w2ðxÞpðx2Þ; w3ðxÞpðx3Þ; . . . ; wNðxÞpðxNÞ�;
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