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Abstract In this paper, we put forth a combined method for calculation of all real zeroes of a poly-

nomial equation through the Adomian decomposition method equipped with a number of devel-

oped theorems from matrix algebra. These auxiliary theorems are associated with eigenvalues of

matrices and enable convergence of the Adomian decomposition method toward different real roots

of the target polynomial equation. To further improve the computational speed of our technique, a

nonlinear convergence accelerator known as the Shanks transform has optionally been employed.

For the sake of illustration, a number of numerical examples are given.
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1. Introduction

Finding the roots of a polynomial equation has been among
the oldest problems of mathematics. The solution of quadrat-

ics was known to the Arab and Persian scholars of the early

Middle Ages, for example Omar Khayyam [1]. The cubic poly-
nomial equation was first solved systematically by Cardano in
mid-16th century. Soon afterward, the solution to quadratics

was formulated [2]. In the early 19th century, Abel and Galios
ingeniously proved that there exists no general formula for zer-
oes of a polynomial equation of degree five or higher. This is

nowadays referred to as the Abel’s impossibility theorem [3].
Since then, iterative schemes began to arise, of which mention
can be made of the Newton–Raphson method of the 17th cen-
tury, Bernoulli’s method of the 18th, and Graeffe’s method of

the early 19th century. A superabundance of new algorithms
has been emerged in the mathematical literature since the
20th century especially due to the advent of electronic comput-

ers [4]. For an extensive account on the history and progress of
polynomial root-finding see [5–9] and the references therein.
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It is the objective of this paper to postulate a polynomial
equation zero-finder by synergistic combination of the Adomi-
an decomposition method and ideas from matrix algebra.

Advantageous use of the companion matrix concept and the
Gershgorin circle theorem will be made. In the final section,
a number of numerical examples are included for the sake of

illustration.

2. The Adomian decomposition method

For the ease of the reader, who is new to this method, we
briefly review the basics of the Adomian decomposition meth-
od (ADM) in this section.

To illustrate the ADM, consider the following general func-
tional equation:

u�NðuÞ ¼ f; ð1Þ

where N is a nonlinear operator, which maps a Hilbert spaceH
into itself, f is a given function and u designates an unknown
function. The ADM decomposes the solution u as an infinite

summation u ¼
P1

i¼0 ui and N as NðuÞ ¼
P1

i¼0 Ai, where Ai

are called the Adomian polynomials [10]:

Ai ¼ Aiðu0; u1; . . . ; uiÞ ¼
1

i!

di

dki N
X1
k¼0

ukk
k

 !�����
k¼0

: ð2Þ

By letting u0 = f, the ADM permits the following recursive
relation to generate components of the solution,

u0 ¼ f;

uiþ1 ¼ Ai; i P 0:

�
ð3Þ

The convergence and reliability of the ADM have been ascer-

tained in prior works (e.g. [11,12]). In [13], Fatoorehchi and
Abolghasemi have developed a completely different algorithm
to generate the Adomian polynomials of any desired nonlinear
operators mainly based on string functions and symbolic pro-

gramming. For more background on the ADM and its appli-
cations, see [14–22] and the references mentioned therein.

3. The proposed method

Suppose that we are after the roots of the following polyno-
mial equation,

PðxÞ ¼ anx
n þ an�1x

n�1 þ � � � þ a2x
2 þ a1xþ a0 ¼ 0: ð4Þ

Without loss of generality, we can convert Eq. (4) to its monic

polynomial equation analog as,

QðxÞ ¼ xn þ bn�1x
n�1 þ � � � þ b2x

2 þ b1xþ b0 ¼ 0: ð5Þ

By definition, the companion matrix associated with Q(x)
reads,

K ¼

0 0 � � � 0 �b0
1 0 � � � 0 �b1
0 1 � � � 0 �b2
..
. ..

. . .
. ..

. ..
.

0 0 � � � 1 �bn�1

2
66666664

3
77777775
: ð6Þ

Denote by eig( ) and roots( ) the operators returning eigen-
values and zeroes of their matrix and polynomial arguments,
respectively.

It holds true that,

eigðKÞ ¼ rootsðQðxÞÞ: ð7Þ

In view of Eq. (7), the problem of zero finding for our polyno-
mial equation is converted to a problem of determining the

eigenvalues of a companion matrix.
Before we proceed, we need to state a few theorems that will

come in handy in the sequel.

Definition 3.1. Let A be a complex n-by-n matrix, with entries
aij. Let Ri ¼

Pn
j–ijaijj, for i e {1, . . . ,n}, be the sum of absolute

values of the non-diagonal entries in the ith row. Also, let
D(aii, Ri) be the closed disk centered at aii with radius Ri Such a

disk is dubbed as Gershgorin disk.

Theorem 3.1 (Gershgorin circle theorem). Every eigenvalue of
A lies within at least one of the Gershgorin disks D(aii, Ri).

Proof. For brevity, we exclude the proof and refer the reader

to [23,24]. h

Theorem 3.2. Let A and B be n · n matrices, I represent identity
matrix in n dimensions, a denote a real number, and eig( ) stand

for an operator returning an eigenvalue of its matrix argument.
If B= A+ aI, then it holds that eig(B) = eig(A) + a.

Proof. Let eigðAÞ ¼ k. This necessitates detðA� kIÞ ¼ 0.
Replacing A with its equivalent gives detðB� aI� kIÞ ¼ 0 or

obviously detðB� ðkþ aÞIÞ ¼ 0. This asserts that the quantity
kþ a is an eigenvalue for the matrix B or in other words
eig(B) = eig(A) + a. h

Theorem 3.3. Denote by k1; . . . ; kn the eigenvalues of an n-by-n

matrix A. It holds true that traceðAÞ ¼
Pn

i¼1 ki.

Proof. Due to space limitation, we suffice to refer the reader to
[25] for the proof of this theorem. h

Theorem 3.4. The characteristic polynomials of two similar

matrices are identical.

Proof. Suppose A and B be n-by-n and similar to each other.
Since A and B are similar, i.e. A � B, it is essential that

A= QBQ�1 for some invertible matrix Q. Take a(x) =
det(A � xI), b(x) = det(B � xI) as the characteristic equations
of A and B, respectively. Hence, a(x) = det(QBQ�1 � xI). It
follows that,

aðxÞ ¼ det �x I� 1

x
QBQ�1

� �� �

¼ ð�xÞn det I� 1

x
QBQ�1

� �
: ð8Þ

Take C= �1/xQB and D= Q�1. Applying the Sylvester
determinant theorem [26], we have

aðxÞ ¼ ð�xÞn detðIþ CDÞ ¼ ð�xÞn detðIþDCÞ: ð9Þ

So,

aðxÞ ¼ ð�xÞn det IþQ�1 � 1

x
QB

� �� �
: ð10Þ
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