

Egyptian Mathematical Society

Journal of the Egyptian Mathematical Society

ORIGINAL ARTICLE

On integral operators for certain classes of *p*-valent functions associated with generalized multiplier transformations

R.M. El-Ashwah a, M.K. Aouf b, S.M. El-Deeb a,*

Received 8 May 2013; accepted 8 June 2013 Available online 26 July 2013

KEYWORDS

Multivalent; Analytic function; Multiplier transformations **Abstract** In this paper, we study new generalized integral operators for the classes of *p*-valent functions associated with generalized multiplier transformations.

2000 MATHEMATICAL SUBJECT CLASSIFICATION: 30C45; 30A20; 34A40

© 2013 Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society.

Open access under CC BY-NC-ND license.

Introduction

Let A(p) denote the class of functions of the form:

$$f(z) = z^p + \sum_{i=n+1}^{\infty} a_i z^i \quad (p \in \mathbb{N} = \{1, 2, \dots\}),$$
 (1.1)

which are analytic and *p*-valent in the open unit disk $U = \{z \in \mathbb{C} : |z| < 1\}$. We write A(1) = A.

For two functions f and g, analytic in U, we say that the function f is subordinate to g, if there exists a Schwarz function

Let $\mathcal{P}_k(p,\rho)$ be the class of functions g(z) analytic in U satisfying the properties g(0)=p and

$$\int_0^{2\pi} \left| \frac{\Re\{g(z)\} - \rho}{p - \rho} \right| d\theta \leqslant k\pi, \tag{1.2}$$

where $z = re^{i\theta}$, $k \ge 2$ and $0 \le \rho \le p$. This class was introduced by Aouf [2, with $\lambda = 0$].

We note that:

- (i) $\mathcal{P}_k(1, \rho) = \mathcal{P}_k(\rho)(k \ge 2, \ 0 \le \rho < 1)$ (see [3]);
- (ii) $\mathcal{P}_k(1,0) = \mathcal{P}_k \ (k \ge 2)$ (see [4,5]);
- (iii) $\mathcal{P}_2(p,\rho) = \mathcal{P}(p,\rho)$ ($0 \le \rho < p, p \in \mathbb{N}$), where $\mathcal{P}(p,\rho)$ is the class of functions with positive real part greater than α (see [6]);

E-mail addresses: r_elashwah@yahoo.com (R.M. El-Ashwah), mkaouf127@yahoo.com (M.K. Aouf), shezaeldeeb@yahoo.com (S.M. El-Deeb).

Peer review under responsibility of Egyptian Mathematical Society.

Production and hosting by Elsevier

^a Department of Mathematics, Faculty of Science, Damietta University, New Damietta 34517, Egypt

^b Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt

w, i.e, $w \in \mathcal{A}(p)$ with w(0) = 0 and |w(z)| < 1, $z \in U$, such that f(z) = g(w(z)) for all $z \in U$. This subordination is usually denoted by f(z) < g(z). It is well-known that if the function g is univalent in U, then f(z) < g(z) is equivalent to f(0) = g(0) and $f(U) \subset g(U)$ (see [1]). If f is subordinate to g, then g is superordinate to f.

^{*} Corresponding author. Tel.: +20 0573476296.

R.M. El-Ashwah et al.

(iv) $\mathcal{P}_2(p,0) = \mathcal{P}(p)(p \in \mathbb{N})$, where $\mathcal{P}(p)$ is the class of functions with positive real part (see [6]).

The classes $\mathcal{R}_k(p,\rho)$ and $\mathcal{V}_k(p,\rho)$ are related to the class $\mathcal{P}_k(p,\rho)$ and can be defined as

$$f \in \mathcal{R}_k(p,\rho) \Longleftrightarrow \frac{zf'(z)}{f(z)} \in \mathcal{P}_k(p,\rho) \quad (z \in U),$$
 (1.3)

and

$$f \in \mathcal{V}_k(p,\rho) \iff \frac{(zf'(z))'}{f'(z)} \in \mathcal{P}_k(p,\rho) \quad (z \in U).$$
 (1.4)

Using the concept of subordination, Aouf [2], with $\alpha = 0$ introduced the class $\mathcal{P}[p, A, B]$ as follows:

For A and B, $-1 \le B \le A \le 1$, a function h analytic in U with h(0) = p belongs to the class $\mathcal{P}[p, A, B]$ if h is subordinate to $p \frac{1+Az}{1+Bz}$.

Let $\mathcal{P}_k[p,A,B](k \ge 2,-1 \le B < A \le 1)$ denote the class of *p*-valent analytic functions *h* that are represented by

$$h(z) = \left(\frac{k}{4} + \frac{1}{2}\right)h_1(z) - \left(\frac{k}{4} - \frac{1}{2}\right)h_2(z) \ (z \in U; \ h_1, h_2 \in \mathcal{P}[p, A, B]).$$

$$(1.5)$$

Now we define the following classes $\mathcal{R}_k[p, A, B]$ and $\mathcal{V}_k[p, A, B]$ of the class $\mathcal{A}(p)$ for $k \ge 2$ and $-1 \le B < A \le 1$ as follows:

$$\mathcal{R}_k[p, A, B] = \left\{ f : f \in \mathcal{A}(p) \text{ and } \frac{zf'(z)}{f(z)} \in \mathcal{P}_k[p, A, B], \ z \in U \right\},$$
(1.6)

and

$$\mathcal{V}_k[p, A, B] = \left\{ f : f \in \mathcal{A}(p) \text{ and } \frac{(zf'(z))'}{f'(z)} \in \mathcal{P}_k[p, A, B], \ z \in U \right\}$$

$$\tag{1.7}$$

Obviously, we know that

$$f(z) \in \mathcal{V}_k[p, A, B] \iff \frac{zf'(z)}{n} \in \mathcal{R}_k[p, A, B].$$
 (1.8)

We note that $\mathcal{P}_k[1, A, B] = \mathcal{P}_k[A, B]$, $\mathcal{R}_k[1, A, B] = \mathcal{R}_k[A, B]$ and $\mathcal{V}_k[1, A, B] = \mathcal{V}_k[A, B]$ (see [7]).

Prajapat [8] defined a generalized multiplier transformation operator $\mathcal{J}_p^m(\lambda,\ell): \mathcal{A}(p) \to \mathcal{A}(p)$, as follows:

$$\mathcal{J}_{p}^{m}(\delta,\ell)f(z) = z^{p} + \sum_{j=p+1}^{\infty} \left(\frac{p+\ell+(j-p)\delta}{p+\ell}\right)^{m} a_{k}z^{k}$$

$$(\delta \geqslant 0; \ \ell > -p; \ p \in \mathbb{N}; \ m \in \mathbb{Z} = \{0, \pm 1, \ldots\}; \ z \in U).$$

$$(1.9)$$

It is readily verified from (1.3) that

$$\begin{aligned} \delta z (\mathcal{J}_p^m(\delta, \ell) f(z))' &= (\ell + p) \mathcal{J}_p^{m+1}(\delta, \ell) f(z) \\ &- [\ell + p(1 - \delta)] \mathcal{J}_p^m(\delta, \ell) f(z) \ (\delta > 0). \ (1.10) \end{aligned}$$

By specializing the parameters m, δ , ℓ and p, we obtain the following operators studied by various authors:

- (i) $\mathcal{J}_p^m(\delta,\ell)f(z) = I_p^m(\delta,\ell)f(z) \ (\ell \geqslant 0, p \in \mathbb{N}, \delta \geqslant 0$ and $m \in \mathbb{N}_0 = \mathbb{N} \cup \{0\})$ (see [9]);
- (ii) $\mathcal{J}_p^m(1,\ell)f(z) = I_p(m,\ell)f(z) \ (\ell \geqslant 0, p \in \mathbb{N} \text{ and } m \in \mathbb{N}_0)$ (see [10,11]);

(iii) $\mathcal{J}_p^m(\delta,0)f(z) = D_{\delta,p}^mf(z)(\delta \geqslant 0, p \in \mathbb{N} \text{ and } m \in \mathbb{N}_0)$ (see [12]);

(iv)
$$\mathcal{J}_p^m(1,0)f(z) = D_p^m f(z) \ (m \in \mathbb{N}_0 \text{ and } p \in \mathbb{N})$$
 (see [13–15]);

(v)
$$\mathcal{J}_p^{-m}(\delta,\ell)f(z) = J_p^m(\delta,\ell)f(z) \ (\ell \geqslant 0, \delta \geqslant 0, p \in \mathbb{N} \text{ and } m \in \mathbb{N}_0) \text{ (see [16-18])};$$

(vi) $\mathcal{J}_p^{-m}(1,1)f(z) = D^m f(z) \ (m \in \mathbb{Z})$ (see [19]);

(vii)
$$\mathcal{J}_1^m(1,\ell)f(z) = I_\ell^m f(z) \ (\ell \geqslant 0$$
 and $m \in \mathbb{N}_0$) (see [20,21]);

(viii) $\mathcal{J}_1^m(\delta,0)f(z) = D_{\delta}^m f(z)$ ($\delta \ge 0$ and $m \in \mathbb{N}_0$) (see [22]);

(ix) $\mathcal{J}_1^m(1,0)f(z) = D^m f(z) \ (m \in \mathbb{N}_0)$ (see [23]);

(x) $\mathcal{J}_1^{-m}(\delta,0)f(z) = I_\delta^{-m}f(z) \ (\delta \geqslant 0 \text{ and } m \in \mathbb{N}_0)$ (see [24,25]);

(xi) $\mathcal{J}_1^{-m}(1,1)f(z) = I^m f(z) \ (m \in \mathbb{N}_0)$ (see [26]).

Let us consider the integral operators:

$$\mathcal{F}_{p,\delta,\ell}^{n,m}(z) = \int_0^z p t^{p-1} \left(\frac{\mathcal{J}_p^m(\delta,\ell) f_1(t)}{t^p} \right)^{\alpha_1} \dots \left(\frac{\mathcal{J}_p^m(\delta,\ell) f_n(t)}{t^p} \right)^{\alpha_n} dt$$
(1.11)

and

$$\mathcal{G}_{p,\delta,\ell}^{n,m}(z) = \int_0^z p t^{p-1} \left(\frac{(\mathcal{J}_p^m(\delta,\ell)f_1(t))'}{p t^{p-1}} \right)^{\beta_1} \dots \left(\frac{(\mathcal{J}_p^m(\delta,\ell)f_n(t))'}{p t^{p-1}} \right)^{\beta_n} dt,$$
(1.12)

where $f_i(z) \in \mathcal{A}(p)$ and α_i , $\beta_i > 0$ for $i = \{1, 2, ..., n\}$. We note that:

(i)
$$\mathcal{F}_{p,\delta,\ell}^{n,0}(z) = F_p(z)$$
 and $\mathcal{G}_{p,\delta,\ell}^{n,0}(z) = G_p(z)$ (see [27,28]); (ii) $\mathcal{F}_{p,\delta,0}^{n,n}(z) = F_n(z)$ (see [29,30]).

Also, we note that

(i)
$$\mathcal{F}_{p,\delta,\ell}^{n,m}(z) = \mathcal{I}_{p,\delta,\ell}^{n,m}(z)$$

$$= \int_{0}^{z} p t^{p-1} \left(\frac{I_{p}^{m}(\delta,\ell)f_{1}(t)}{t^{p}} \right)^{\alpha_{1}} \dots \left(\frac{I_{p}^{m}(\delta,\ell)f_{n}(t)}{t^{p}} \right)^{\alpha_{n}} dt$$

$$(\ell \geq 0; \ \delta \geq 0; \ p \in \mathbb{N}; \ m \in \mathbb{N}_{0})$$

$$(1.13)$$

and

$$\mathcal{G}_{p,\delta,\ell}^{n,m}(z) = G_{p,\delta,\ell}^{n,m}(z)$$

$$= \int_0^z pt^{p-1} \left(\frac{\left(I_p^m(\delta,\ell) f_1(t) \right)'}{pt^{p-1}} \right)^{\beta_1} \dots \left(\frac{\left(I_p^m(\delta,\ell) f_n(t) \right)'}{pt^{p-1}} \right)^{\beta_n} dt$$

$$(\ell \geqslant 0; \ \delta \geqslant 0; \ p \in \mathbb{N}; \ m \in \mathbb{N}_0); \tag{1.14}$$
(ii)

$$\mathcal{F}_{p,\delta,0}^{n,m}(z) = \mathcal{D}_{p,\delta}^{n,m}(z)$$

$$= \int_{0}^{z} p t^{p-1} \left(\frac{D_{\delta,p}^{m} f_{1}(t)}{t^{p}}\right)^{\alpha_{1}} \dots \left(\frac{D_{\delta,p}^{m} f_{n}(t)}{t^{p}}\right)^{\alpha_{n}} dt$$

$$(\delta \geq 0; \ p \in \mathbb{N}; \ m \in \mathbb{N}_{0})$$

$$(1.15)$$

and

Download English Version:

https://daneshyari.com/en/article/483566

Download Persian Version:

https://daneshyari.com/article/483566

Daneshyari.com