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Abstract In this paper, the relativistic harmonic oscillator equation which is a nonlinear ordinary

differential equation is investigated by Homotopy perturbation method. Selection of a linear oper-

ator, which is a part of the main operator, is one of the main steps in HPM. If the aim is to obtain a

periodic solution, this choice does not work here. To overcome this lack, a linear operator is

imposed, and Fourier series of sines will be used in solving the linear equations arise in the

HPM. Comparison of the results, with those of resulted by Differential Transformation and Har-

monic Balance Method, shows an excellent agreement.
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1. Introduction

Mathematical model of Physical and mechanical oscillatory
systems are often leads to a nonlinear differential equations
of the second order. Many researchers are interested to study

these equations. To solve nonlinear differential equations,
there are several semianalytical methods known, such as
Harmonic Balance [1–3], Differential Transformation [4–6],

Adomian decomposition [7,8], and Homotopy perturbation

[9–16]. But it is important to find the periodic solution to some

of these equations. The relativistic harmonic oscillator intro-
duced by Penfield and Zatzkis [17] in 1956. Mickens [1] has
shown that all solutions to the relativistic oscillator are peri-

odic and he has introduced a method for calculating an ana-
lytic approximation to the solution. This paper applies
Homotopy perturbation method to find a periodic solution
for relativistic oscillator, but in prior, a special linear operator

should be imposed in the homotopy. HPM uses the parameter
p to transfer a nonlinear problem into an infinite number of
linear sub-problems, and then approximate it by the sum of

solutions of the first several sub-problems. Fourier series of
sines is used to solve these equations.

2. Definition of the problem

Consider the relativistic motion of a particle of rest mass m in a
one dimensional harmonic oscillator force, F ¼ �k�x. Where k is
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the elastic constant and �x is the displacement (dimensional vari-
able). Newton’s equation of motion can be written in the form

F ¼ dp

d�t
; ð1Þ

where �t is the time coordinate (dimensional variable) and p is
the relativistic momentum which can be written as follows,

p ¼ mvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p ; ð2Þ

where v ¼ d�x
d�t
is the speed of the particle and c is the speed of

light. Substituting Eq. (2) into Eq. (1) leads to

F ¼ d

d�t

mvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p
 !

¼ m

ð1� v2=c2Þ3=2
dv

d�t

¼ m

½1� ð1=c2Þðd�x=d�tÞ2�3=2
d2�x

d�t2
: ð3Þ

Substituting Eq. (3) into Newton’s equation of motion in the
form

dv

d�t
þ k�x ¼ 0; ð4Þ

results in

d2�x

d�t2
þ k

m
1� 1

c2
d�x

d�t

� �2
" #3=2

�x ¼ 0: ð5Þ

From Eq. (5), one can write the non-dimensional nonlinear

differential equation of motion for the relativistic oscillator
as follows

d2x

dt2
þ 1� dx

dt

� �2
" #3=2

x ¼ 0; ð6Þ

where x and t are dimensionless variables defined as follows:

x ¼ x0�x

c
; t ¼ x0�t;

where x0 ¼
ffiffiffiffiffiffiffiffiffi
k=m

p
is the angular frequency for the non-rela-

tivistic oscillator (linear oscillator). Let us consider the follow-

ing initial conditions on Eq. (6).

xð0Þ ¼ 0; x0ð0Þ ¼ b: ð7Þ

Mickens [1] has shown that all the motions corresponding to
Eq. (6) are periodic and the period depends on the values
ofb. In addition, he has shown that the period is

2p ¼ 2p
x
; ð8Þ

where

x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2b2

2� b2

4

s
: ð9Þ

3. Mathematical formulation of the method

3.1. Homotopy perturbation method (HPM)

HPM is a known method for solving the following nonlinear
functional equations

AðuðrÞÞ ¼ 0; r 2 X;

B u; @u
@n

� �
¼ 0; r 2 C;

ð10Þ

where A is a general differential operator, B is a boundary

operator, and C is the boundary of the domain X. This method
is well addressed in [9–14] and has been used by many
researchers. There are some papers regarding convergence of

the method [9,12]. The major advantage of Homotopy pertur-
bation method is that the homotopy can be freely constructed
in many forms by selecting different linear operators or initial
approximations, according to initial conditions. This is a use-

ful property to find a periodic solution.

3.2. Periodic solution

To find a periodic solution of Eq. (10), with period 2p, let us
consider the solution as the following series,

uðtÞ ¼
X1
k¼1

ak sinðkxtÞ; ð11Þ

where x ¼ p
p
. Homotopy can be constructed, with linear and

nonlinear operators, as follows

ð1� pÞ½LðvÞ � Lðu0Þ� þ p½N ðvÞ þ LðvÞ� ¼ 0; p 2 ½0; 1� ð12Þ

where

LðvÞ ¼ @2

@t2
vþ x2v;

NðvÞ ¼ AðvÞ � LðvÞ:

Assume the solution of (12) have the form

vðt; pÞ ¼ v0ðtÞ þ v1ðtÞpþ v2ðtÞp2 þ � � � : ð13Þ

Substituting Eq. (13) into Eq. (12) and equating the coeffi-

cients of the terms with identical powers of p, results in

p0 : Lðv0Þ ¼ Lðu0Þ;
p1 : Lðv1Þ ¼ R1;

p2 : Lðv2Þ � Lðv1Þ ¼ R2;

..

.

ð14Þ

where Rk is the coefficient of p
k in �p½AðvÞ�. To solve this lin-

ear equations, rewrite Rk as

Rk ¼
Xlk
n¼1

bn sinðnxtÞ; ð15Þ

where

bn ¼
1

p

Z p

�p
Rk sinðnxtÞdt:

By determining Rk in the form (15), one can easily solve the
Eq. (14). This approach is used to find a periodic solution to

the nonlinear relativistic harmonic oscillator with a predeter-
mined period.

4. Periodic solution to nonlinear relativistic harmonic oscillator

As previously mentioned, Mickens [1] has shown that all the
motions corresponding to Eq. (6) are periodic with the period

2p, in the forms (8) and (9). According to the Eq. (6), initial
conditions (7), and the fact that the solutions are periodic;
the solution can be expressed by a linear combination of the

following base function

fsinð2nþ 1Þxtjn ¼ 0; 1; 2; . . .g:
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