

Egyptian Mathematical Society

Journal of the Egyptian Mathematical Society

www.etms-eg.org www.elsevier.com/locate/joems

ORIGINAL ARTICLE

Fixed point theorems in fuzzy metric spaces $\stackrel{ riangle}{\to}$

M.A. Ahmed *

Department of Mathematics, Faculty of Science, Assiut University, Assiut 71516, Egypt

Received 5 January 2013; revised 7 May 2013; accepted 9 May 2013 Available online 23 July 2013

KEYWORDS

Fixed point; Fuzzy metric spaces; Fuzzy mapping **Abstract** In this paper, we state and prove some common fixed point theorems in fuzzy metric spaces. These theorems generalize and improve known results (see [1]).

2000 MATHEMATICS SUBJECT CLASSIFICATION: 47H10; 54H25

© 2013 Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society. Open access under CC BY-NC-ND license.

1. Introduction

In 1965, the theory of fuzzy sets was investigated by Zadeh [2]. In 1981, Heilpern [3] first introduced the concept of fuzzy contractive mappings and proved a fixed point theorem for these mappings in metric linear spaces. His result is a generalization of the fixed point theorem for point-to-set maps of Nadler [4]. Therefore, several fixed point theorems for types of fuzzy contractive mappings have appeared (see, for instance [1,5–9]).

In this paper, we state and prove some common fixed point theorems in fuzzy metric spaces. These theorems generalize and improve known results (see [1]).

^{*} This paper (Ref. No. TGA-01-15) is presented in the International Conference on Mathematics, Trends and Development (ICMTD12), 27–29 December 2012, Cairo, Egypt.

Peer review under responsibility of Egyptian Mathematical Society.

2. Basic preliminaries

The definitions and terminologies for further discussions are taken from Heilpern [3]. Let (X, d) be a metric linear space. A **fuzzy set** in X is a function with domain X and values in [0, 1]. If A is a fuzzy set and $x \in X$, then the function-value A(x) is called the **grade of membership** of x in A. The collection of all fuzzy sets in X is denoted by $\Im(X)$.

Let $A \in \mathfrak{I}(X)$ and $\alpha \in [0, 1]$. The α -level set of A, denoted by A_{α} , is defined by

$$A_{\alpha} = \{ x : A(x) \ge \alpha \} \quad \text{if} \quad \alpha \in (0, 1], \quad A_0 = \overline{\{ x : A(x) > 0 \}},$$

whenever \overline{B} is the closure of set (nonfuzzy) *B*.

Definition 2.1. A fuzzy set *A* in *X* is an **approximate quantity** iff its α -level set is a nonempty compact convex subset (nonfuzzy) of *X* for each $\alpha \in [0, 1]$ and $sup_{x \in X}A(x) = 1$.

The set of all approximate quantities, denoted by W(X), is a subcollection of $\Im(X)$.

Definition 2.2. Let $A, B \in W(X), \alpha \in [0, 1]$ and CP(X) be the set of all nonempty compact subsets of *X*. Then

1110-256X © 2013 Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society. Open access under CC BY-NC-ND license. http://dx.doi.org/10.1016/j.joems.2013.05.001

^{*} Tel.: +20 882317965.

E-mail address: mahmed68@yahoo.com

$$p_{\alpha}(A,B) = \inf_{x \in A_{\alpha}, y \in B_{\alpha}} d(x,y), \quad \delta_{\alpha}(A,B) = \sup_{x \in A_{\alpha}, y \in B_{\alpha}} d(x,y) \text{ and }$$
$$D_{\alpha}(A,B) = H(A_{\alpha},B_{\alpha}),$$

where *H* is the **Hausdorff metric** between two sets in the collection CP(X). We define the following functions

$$p(A, B) = \sup_{\alpha} p_{\alpha}(A, B), \quad \delta(A, B) = \sup_{\alpha} \delta_{\alpha}(A, B) \quad \text{and}$$
$$D(A, B) = \sup_{\alpha} D_{\alpha}(A, B).$$

It is noted that p_{α} is nondecreasing function of α .

Definition 2.3. Let $A, B \in W(X)$. Then A is said to be more accurate than B (or B includes A), denoted by $A \subset B$, iff $A(x) \leq B(x)$ for each $x \in X$.

The relation \subset induces a partial order on W(X).

Definition 2.4. Let X be an arbitrary set and Y be a metric linear space. F is said to be a **fuzzy mapping** iff F is a mapping from the set X into W(Y), i.e., $F(x) \in W(Y)$ for each $x \in X$.

The following proposition is used in the sequel.

Proposition 2.1. ([4]).*If* A, $B \in CP(X)$ and $a \in A$, then there exists $b \in B$ such that $d(a,b) \leq H(A,B)$.

Following Beg and Ahmed [10], let (X,d) be a metric space. We consider a subcollection of $\Im(X)$ denoted by $W^*(X)$. Each fuzzy set $A \in W^*(x)$, its α -level set is a nonempty compact subset (nonfuzzy) of X for each $\alpha \in [0,1]$. It is obvious that each element $A \in W(X)$ leads to $A \in W^*(X)$ but the converse is not true.

The authors [10] introduced the improvements of the lemmas in Heilpern [3] as follows.

Lemma 2.1. If $\{x_0\} \subset A$ for each $A \in W^*(X)$ and $x_0 \in X$, then $p_{\alpha}(x_0, B) \leq D_{\alpha}(A, B)$ for each $B \in W^*(X)$.

Lemma 2.2. $p_{\alpha}(x, A) \leq d(x, y) + p_{\alpha}(y, A)$ for all $x, y \in X$ and $A \in W^{*}(X)$.

Lemma 2.3. Let $x \in X$, $A \in W^*(X)$ and $\{x\}$ be a fuzzy set with membership function equal to a characteristic function of the set $\{x\}$. Then $\{x\} \subset A$ if and only if $p_{\alpha}(x, A) = 0$ for each $\alpha \in [0, 1]$.

Lemma 2.4. Let (X,d) be a complete metric space, $F: X \rightarrow W^*(X)$ be a fuzzy map and $x_0 \in X$. Then there exists $x_1 \in X$ such that $\{x_1\} \subset F(x_0)$.

Remark 2.1. It is clear that Lemma 2.4 is a generalization of corresponding lemma in Arora and Sharma [1] and Proposition 3.2 in Lee and Cho [7].

Let Ψ be the family of real lower semi-continuous functions $F: [0, \infty)^6 \to R, R :=$ the set of all real numbers, satisfying the following conditions:

- (ψ_1) F is non-increasing in 3rd, 4th, 5th, 6th coordinate variable,
- (ψ_2) there exists $h \in (0,1)$ such that for every $u, v \ge 0$ with

- $(\psi_{21}) F(u,v,v,u,u+v,0) \leq 0 \text{ or } (\psi_{22}) F(u,v,u,v,0,u+v) \leq 0,$ we have $u \leq h v$, and
- $(\psi_3) F(u, u, 0, 0, u, u) > 0$ for all u > 0.

3. Main results

In 2000, Arora and Sharma [1] proved the following result.

Theorem 3.1. Let (X,d) be a complete metric space and T_1 , T_2 be fuzzy mappings from X into W(X). If there is a constant q, $0 \le q < 1$, such that, for each x, $y \in X$,

$$D(T_1(x), T_2(y)) \leq q \max\{d(x, y), p(x, T_1(x)), p(y, T_2(y)), p(x, T_2(y)), p(y, T_1(x))\},\$$

then there exists $z \in X$ such that $\{z\} \subset T_1(z)$ and $\{z\} \subset T_2(z)$.

Remark 3.1. If there is a constant q, $0 \le q < 1$, such that, for each $x, y \in X$,

$$D(T_1(x), T_2(y)) \leq q \max\{d(x, y), p(x, T_1(x)), p(y, T_2(y))\}, \quad (1)$$

then the conclusion of Theorem 3.1 remains valid. This result is considered as a special case of Theorem 3.1.

Beg and Ahmed [10] generalized Theorem 3.1 as follows.

Theorem 3.2. Let (X,d) be a complete metric space and T_1 , T_2 be fuzzy mappings from X into $W^*(X)$. If there is a $F \in \Psi$ such that, for all $x, y \in X$,

$$F(D(T_1(x), T_2(y)), d(x, y), p(x, T_1(x)), p(y, T_2(y)),$$

$$p(x, T_2(y)), p(y, T_1(x))) \leq 0,$$
(2)

then there exists $z \in X$ such that $\{z\} \subset T_1(z)$ and $\{z\} \subset T_2(z)$.

Widely inspired by a paper of Tas et al. [11], we give another different generalization of Theorem 3.1 with contractive condition (1) as follows.

Theorem 3.3. Let (X,d) be a complete metric space and T_1 , T_2 be fuzzy mappings from X into $W^*(X)$. Assume that there exist c_1 , c_2 , $c_3 \in [0,\infty)$ with $c_1 + 2c_2 < 1$ and $c_2 + c_3 < 1$ such that, for all $x, y \in X$,

$$D^{2}(T_{1}(x), T_{2}(y)) \leq c_{1} \max\{d^{2}(x, y), p^{2}(x, T_{1}(x)), p^{2}(y, T_{2}(y))\} + c_{2} \max\{p(x, T_{1}(x))p(x, T_{2}(y)), p(y, T_{1}(x)) p(y, T_{2}(y))\} + c_{3}p(x, T_{2}(y))p(y, T_{1}(x)).$$
(3)

Then there exists $z \in X$ such that $\{z\} \subset T_1(z)$ and $\{z\} \subset T_2(z)$.

Proof. Let x_0 be an arbitrary point in *X*. Then by Lemma 2.4, there exists an element $x_1 \in X$ such that $\{x_1\} \subset T_1(x_0)$. For $x_1 \in X$, $(T_2(x_1))_1$ is nonempty compact subset of *X*. Since $(T_1(x_0))_1, (T_2(x_1))_1 \in CP(X)$ and $x_1 \in (T_1(x_0))_1$, then Proposition 2.1 asserts that there exists $x_2 \in (T_2(x_1))_1$ such that $d(x_1,x_2) \leq D_1(T_1(x_0), T_2(x_1))$. So, we obtain from the inequality $D(A, B) \geq D_\alpha(A, B) \forall \alpha \in [0, 1]$ that

Download English Version:

https://daneshyari.com/en/article/483571

Download Persian Version:

https://daneshyari.com/article/483571

Daneshyari.com