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Abstract In this paper, we state and prove some common fixed point theorems in fuzzy metric

spaces. These theorems generalize and improve known results (see [1]).
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1. Introduction

In 1965, the theory of fuzzy sets was investigated by Zadeh [2].

In 1981, Heilpern [3] first introduced the concept of fuzzy con-
tractive mappings and proved a fixed point theorem for these
mappings in metric linear spaces. His result is a generalization

of the fixed point theorem for point-to-set maps of Nadler [4].
Therefore, several fixed point theorems for types of fuzzy con-
tractive mappings have appeared (see, for instance [1,5–9]).

In this paper, we state and prove some common fixed point

theorems in fuzzy metric spaces. These theorems generalize
and improve known results (see [1]).

2. Basic preliminaries

The definitions and terminologies for further discussions are

taken from Heilpern [3]. Let (X,d) be a metric linear space.
A fuzzy set in X is a function with domain X and values in
[0,1]. If A is a fuzzy set and x 2 X, then the function-value

A(x) is called the grade of membership of x in A. The collection
of all fuzzy sets in X is denoted by IðXÞ.

Let A 2 IðXÞ and a 2 [0,1]. The a-level set of A, denoted by
Aa, is defined by

Aa ¼ fx : AðxÞP ag if a 2 ð0; 1�; A0 ¼ fx : AðxÞ > 0g;

whenever B is the closure of set (nonfuzzy) B.

Definition 2.1. A fuzzy set A in X is an approximate quantity iff

its a-level set is a nonempty compact convex subset (nonfuzzy)
of X for each a 2 [0,1] and supx2XA(x) = 1.

The set of all approximate quantities, denoted by W(X), is a
subcollection of IðXÞ.

Definition 2.2. Let A, B 2W(X), a 2 [0,1] and CP(X) be the set

of all nonempty compact subsets of X. Then
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paðA;BÞ ¼ inf
x2Aa ;y2Ba

dðx; yÞ; daðA;BÞ ¼ sup
x2Aa ;y2Ba

dðx; yÞ and

DaðA;BÞ ¼ HðAa;BaÞ;

where H is the Hausdorff metric between two sets in the collec-
tion CP(X). We define the following functions

pðA;BÞ ¼ sup
a
paðA;BÞ; dðA;BÞ ¼ sup

a
daðA;BÞ and

DðA;BÞ ¼ sup
a
DaðA;BÞ:

It is noted that pa is nondecreasing function of a.

Definition 2.3. Let A, B 2W(X). Then A is said to be more

accurate than B (or B includes A), denoted by A � B, iff
A(x) 6 B(x) for each x 2 X.

The relation � induces a partial order on W(X).

Definition 2.4. Let X be an arbitrary set and Y be a metric lin-
ear space. F is said to be a fuzzy mapping iff F is a mapping

from the set X into W(Y), i.e., F(x) 2W(Y) for each x 2 X.

The following proposition is used in the sequel.

Proposition 2.1. ([4]).If A, B 2 CP(X) and a 2 A, then there

exists b 2 B such that d(a,b) 6 H(A,B).

Following Beg and Ahmed [10], let (X,d) be a metric space.

We consider a subcollection of IðXÞ denoted by W*(X). Each
fuzzy set A 2W*(x), its a-level set is a nonempty compact
subset (nonfuzzy) of X for each a 2 [0,1]. It is obvious that

each element A 2W(X) leads to A 2W*(X) but the converse is
not true.

The authors [10] introduced the improvements of the lem-
mas in Heilpern [3] as follows.

Lemma 2.1. If {x0} � A for each A 2W*(X) and x0 2 X, then

pa(x0,B) 6 Da(A,B) for each B 2W*(X).

Lemma 2.2. pa(x,A) 6 d(x,y) + pa(y,A) for all x, y 2 X and
A 2W*(X).

Lemma 2.3. Let x 2 X, A 2W*(X) and {x} be a fuzzy set with

membership function equal to a characteristic function of the set
{x}. Then {x} � A if and only if pa(x,A) = 0 for each
a 2 [0,1].

Lemma 2.4. Let (X,d) be a complete metric space, F:

X fi W*(X) be a fuzzy map and x0 2 X. Then there exists
x1 2 X such that {x1} � F(x0).

Remark 2.1. It is clear that Lemma 2.4 is a generalization of
corresponding lemma in Arora and Sharma [1] and Proposi-

tion 3.2 in Lee and Cho [7].

Let W be the family of real lower semi-continuous functions

F: [0,1)6 fi R, R :¼ the set of all real numbers, satisfying the
following conditions:

(w1) F is non-increasing in 3rd, 4th, 5th, 6th coordinate
variable,

(w2) there exists h 2 (0,1) such that for every u, v P 0 with

(w21) F(u,v,v,u,u + v, 0) 6 0 or (w22) F(u,v,u,v, 0,u + v) 6 0,

we have u 6 h v, and
(w3) F(u,u, 0,0,u,u) > 0 for all u> 0.

3. Main results

In 2000, Arora and Sharma [1] proved the following result.

Theorem 3.1. Let (X,d) be a complete metric space and T1, T2

be fuzzy mappings from X into W(X). If there is a constant q,
0 6 q < 1, such that, for each x, y 2 X,

DðT1ðxÞ;T2ðyÞÞ 6 qmaxfdðx; yÞ; pðx;T1ðxÞÞ; pðy;T2ðyÞÞ;

pðx;T2ðyÞÞ; pðy;T1ðxÞÞg;

then there exists z 2 X such that {z} � T1(z) and {z} � T2(z).

Remark 3.1. If there is a constant q, 0 6 q< 1, such that, for

each x, y 2 X,

DðT1ðxÞ;T2ðyÞÞ6qmaxfdðx; yÞ; pðx;T1ðxÞÞ; pðy;T2ðyÞÞg; ð1Þ

then the conclusion of Theorem 3.1 remains valid. This result

is considered as a special case of Theorem 3.1.
Beg and Ahmed [10] generalized Theorem 3.1 as follows.

Theorem 3.2. Let (X,d) be a complete metric space and T1, T2

be fuzzy mappings from X into W*(X). If there is a F 2 W such
that, for all x, y 2 X,

FðDðT1ðxÞ;T2ðyÞÞ; dðx; yÞ; pðx;T1ðxÞÞ; pðy;T2ðyÞÞ;

pðx;T2ðyÞÞ; pðy;T1ðxÞÞÞ 6 0; ð2Þ

then there exists z 2 X such that {z} � T1(z) and {z} � T2(z).

Widely inspired by a paper of Tas et al. [11], we give
another different generalization of Theorem 3.1 with contrac-
tive condition (1) as follows.

Theorem 3.3. Let (X,d) be a complete metric space and T1, T2

be fuzzy mappings from X into W*(X). Assume that there exist
c1, c2, c3 2 [0,1) with c1 + 2c2 < 1 and c2 + c3 < 1 such
that, for all x, y 2 X,

D2ðT1ðxÞ;T2ðyÞÞ 6 c1 maxfd2ðx; yÞ; p2ðx;T1ðxÞÞ; p2ðy;T2ðyÞÞg

þ c2 maxfpðx;T1ðxÞÞpðx;T2ðyÞÞ; pðy;T1ðxÞÞ

pðy;T2ðyÞÞg þ c3pðx;T2ðyÞÞpðy;T1ðxÞÞ:

ð3Þ

Then there exists z 2 X such that {z} � T1(z) and {z} �
T2(z).

Proof. Let x0 be an arbitrary point in X. Then by Lemma 2.4,

there exists an element x1 2 X such that {x1} � T1(x0). For
x1 2 X, (T2(x1))1 is nonempty compact subset of X. Since
(T1(x0))1, (T2(x1))1 2 CP(X) and x1 2 (T1(x0))1, then Proposi-

tion 2.1 asserts that there exists x2 2 (T2(x1))1 such that
d(x1,x2) 6 D1(T1(x0), T2(x1)). So, we obtain from the inequal-
ity D(A,B) P Da(A,B) "a 2 [0,1] that
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