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Abstract The purpose of this paper is to obtain the fixed point results for F-type contractions

which satisfies a weaker condition than the monotonicity of self-mapping of a partially ordered met-

ric-like space. A fixed point result for F-expansive mapping is also proved. Therefore, several well

known results are generalized. Some examples are included which illustrate the results.
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1. Introduction and preliminaries

Ran and Reurings [1] and Nieto and Lopez [2,3] obtained the

existence of fixed points of a self-mapping of a metric space
equipped with a partial order. The fixed point results in spaces
equipped with a partial order can be applied in proving exis-

tence and uniqueness of solutions for matrix equations as well
as for boundary value problems of ordinary differential equa-
tions, integral equations, fuzzy equations, of problems in L-

spaces, etc. (see [1–11]). The results of Ran and Reurings [1]
and Nieto and Lopez [2,3] were generalized by several authors

(see, e.g., [4,5,8,12–17]).
In all these papers, the condition of monotonicity with re-

spect to the partial order defined on space is required. Follow-

ing is a typical result among these.

Theorem 1 ([1,2]). Let (X,v) be a partially ordered set which
is directed (upward or downward) and let d be a metric on X
such that (X,d) is a complete metric space. Let f:X fi X be a

mapping such that the following conditions hold:

(i) f is monotone (nondecreasing or nonincreasing) on X with

respect to ‘‘v’’;
(ii) there exists x0 2 X such that x0 v fx0 or fx0 v x0;
(iii) there exists k 2 (0,1) such that d(fx, fy) 6 kd(x,y) for

all x, y 2 X with y v x;

(iv) (a) f is continuous, or
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(b) if a nondecreasing sequence {xn} converges to

x 2 X, then xn v x for all n.

Then, f has a fixed point x* 2 X.

Recently, the fixed point results on partially ordered sets
are investigated via a weaker property than the monotonicity
of f (see [8,13,18,19]). We state following facts from these

papers.
Let (X,v) be a partially ordered set and x, y 2 X. If x, y are

comparable (i.e., x v y or y v x holds), then we will write x � y.

Lemma 2 [18]. Consider the following properties for a self-map

f on a partially ordered set (X,v):

1. f is monotone (nondecreasing or nonincreasing), i.e.,

x v y) fx v fy for all x, y 2 X or y v x) fx v fy for all
x, y 2 X;

2. x � y) fx � fy for x, y 2 X;
3. x � fx) fx � ffx for x 2 X.

Then 1) 2) 3. The reverse implications do not hold in
general.

On the other hand, Matthews [20] introduced the notion of
partial metric space as a part of the study of denotational

semantics of data flow network. In this space, the usual metric
is replaced by partial metric with an interesting property that
the self-distance of any point of space may not be zero. Fur-

ther, Matthews showed that the Banach contraction principle
is valid in partial metric space and can be applied in program
verification.

Very recently, Amini-Harandi [21] generalized the partial
metric spaces by introducing the metric-like spaces and proved
some fixed point theorems in such spaces. In [22], Wardowski
introduced a new concept of an F-contraction and proved a

fixed point theorem which generalizes Banach contraction
principle in a different way than in the known results from
the literature in complete metric spaces. In this paper, we con-

sider a more generalized type of F-contractions and prove
some common fixed point theorems for such type of mappings
in metric-like spaces. We generalize the result of Wardowski

[22], Matthews [20], Ran and Reurings [1], Nieto and Lopez
[2], and the recent result of –Dorić et al. [18] by proving the fixed
point results for F � g � weak contractions in metric-like

spaces equipped with a partial order. Results of this paper
are new not only in the setting of metric-like spaces but also
in the setting of metric and partial metric spaces.

First, we recall some definitions and facts about partial

metric and metric-like spaces.

Definition 1 [20]. A partial metric on a nonempty set X is a
function p : X� X! Rþ (Rþ stands for nonnegative reals)

such that, for all x, y, z 2 X:

(p1) x= y if and only if p(x,x) = p(x,y) = p(y,y);
(p2) p(x,x) 6 p(x,y);

(p3) p(x,y) = p(y,x);
(p4) p(x,y) 6 p(x,z) + p(z,y) � p(z,z).

A partial metric space is a pair (X,p) such that X is a
nonempty set and p is a partial metric on X. A sequence {xn} in

(X,p) converges to a point x 2 X if and only if

p(x,x) = limnfi1p(xn,x). A sequence {xn} in (X,p) is called
p-Cauchy sequence if there exists limn,mfi1p(xn,xm) and is
finite. (X,p) is said to be complete if every p-Cauchy sequence

{xn} in X converges to a point x 2 X such that
p(x,x) = limn,mfi1p(xn,xm).

Definition 2 [21]. A metric-like on a nonempty set X is a func-
tion r : X� X! Rþ such that, for all x, y, z 2 X:

(r1) r(x,y) = 0 implies x = y;
(r2) r(x,y) = r(y,x);
(r3) r(x,y) 6 r(x,z) + r(z,y).

A metric-like space is a pair (X,r) such that X is a
nonempty set and r is a metric-like on X. Note that, a metric-

like satisfies all the conditions of metric except that r(x,x) may
be positive for x 2 X. Each metric-like r on X generates a
topology sr on X whose base is the family of open r-balls

Brðx; �Þ ¼ fy 2 X : jrðx; yÞ � rðx; xÞj < �g;
for all x 2 X and � > 0:

A sequence {xn} in X converges to a point x 2 X if and only if
limnfi1r(xn,x) = r(x,x). Sequence {xn} is said to be r-Cauchy
if limn,mfi1r(xn,xm) exists and is finite. The metric-like space
(X,r) is called r-complete if for each r-Cauchy sequence
{xn}, there exists x 2 X such that

lim
n!1

rðxn; xÞ ¼ rðx; xÞ ¼ lim
m;n!1

rðxn; xmÞ:

Note that every partial metric space is a metric-like space,
but the converse may not be true.

Example 1 [21]. Let X= {0,1} and r : X� X! Rþ be

defined by

rðx; yÞ ¼
2; if x ¼ y ¼ 0;

1; otherwise:

�

Then (X,r) is a metric-like space, but it is not a partial metric
space, as r(0,0) £ r(0,1).

Example 2. Let X ¼ R; k P 0 and r : X� X! Rþ be defined

by

rðx; yÞ ¼
2k; if x ¼ y ¼ 0;

k; otherwise:

�

Then (X,r) is a metric-like space, but for k > 0, it is not a par-
tial metric space, as r(0,0) ¥ r(0,1).

Example 3. Let X ¼ Rþ and r : X� X! Rþ be defined by

rðx; yÞ ¼
2x; if x ¼ y;

maxfx; yg; otherwise:

�

Then (X,r) is a metric-like space, it is not a partial metric
space, as r(1,1) = 2 £ r(0,1) = 1.

Definition 3. If a nonempty set X is equipped with a partial
order ‘‘v’’ such that (X,r) is a metric-like space, then the
(X,r,v) is called a partially ordered metric-like space. A subset
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