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Attractivity of two nonlinear third order difference equations

Raafat Abo-Zeid

Department of Basic Science, The High Institute for Engineering & Modern Technology, Cairo, Egypt

Received 30 December 2012; revised 26 February 2013; accepted 12 March 2013
Available online 23 April 2013

KEYWORDS

Difference equation;

Periodic solution;

Attractivity;

Asymptotically stable

Abstract The aim of this work is to investigate the global attractivity, periodic nature, oscillation

and the boundedness of all admissible solutions of the difference equations

xnþ1 ¼
A� Bxn�1

�CþDxn�2
; n ¼ 0; 1; . . .

where A, B are nonnegative real numbers, C, D are positive real numbers and
±C+ Dxn�2 „ 0 for all n P 0.
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1. Introduction

Difference equations appear naturally as discrete analogues
and numerical solutions of differential equations and delay dif-

ferential equations having applications in biology, ecology,
physics, etc, [1].

The study of nonlinear rational difference equations of
higher order is of paramount importance, since we still know

so little about such equations.
El-Owaidy et al. [2] investigated the global attractivity of

the difference equation

xnþ1 ¼
a� bxn�1

cþ xn

; n ¼ 0; 1; . . .

where, a, b, c are non-negative real numbers and c + xn „ 0 for

all n P 0.
Xiu-Mei et al. [3] investigated the global attractivity of the

negative solutions of the nonlinear difference equation

xnþ1 ¼
1� xn�k

AþDxn

; n ¼ 0; 1; . . .

where A 2 (�1, 0), k is a positive integer and A + Dxn „ 0 for
all n P 0.

Wan-Sheng et al. [4] studied the attractivity of the nonlinear

delay difference equation

xnþ1 ¼
a� bxn�k

Aþ xn

; n ¼ 0; 1; . . .

where a P 0, b, A> 0, k 2 {1, 2, . . .} and A+ xn „ 0 for all
n P 0.

In this paper, we study the global attractivity of the differ-

ence equations
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xnþ1 ¼
A� Bxn�1

�CþDxn�2
; n ¼ 0; 1; . . . ð1:1Þ

where A, B are nonnegative real numbers, C, D are positive

real numbers and±C+ Dxn�2 „ 0 for all n P 0.

2. Preliminaries

Consider the difference equation

xnþ1 ¼ fðxn; xn�1; . . . ; xn�kÞ; n ¼ 0; 1; . . . ð2:1Þ

Let f be a continuous function which maps some set Jk+1

into J, where J is some interval of real numbers. It is easy to
see that Eq. (2.1) has a unique solution fxng1n¼�k for the initial
conditions x�k, x�k+1, . . ., x0 2 J.

Definition 2.1. [5]

(1) An equilibrium point �x for Eq. (2.1) is called locally sta-

ble if for every e > 0, there exists d > 0 such that for all
x�k, x�k+1, . . ., x0 2 J with

P0
i¼�k jxi � �xj < d we have

jxn � �xj < � for all n 2 N. Otherwise �x is said to be
unstable.

(2) The equilibrium point �x of Eq. (2.1) is called locally
asymptotically stable if it is locally stable and there
exists c > 0 such that for any initial conditions withP0

i¼�k jxi � �xj < c, we have limn!1xn ¼ �x.
(3) The equilibrium point �x for Eq. (2.1) is called a global

attractor if x�k, x�k+1, . . ., x0 2 J always implies that

limn!1xn ¼ �x.
(4) The equilibrium point �x for Eq. (2.1) is called globally

asymptotically stable if it is locally asymptotically stable

and global attractor.

The linearized equation associated with Eq. (2.1) is

ynþ1 ¼
Xk
i¼0

@f

@xn�i
ð�x; . . . ; �xÞyn�i; n ¼ 0; 1; . . . ð2:2Þ

The characteristic equation associated with Eq. (2.2) is

kkþ1 �
Xk
i¼0

@f

@xn�i
ð�x; . . . ; �xÞkk�i ¼ 0: ð2:3Þ

Theorem 2.2 [5]. Assume that f is a C1 function and let �x be an
equilibrium point of Eq. (2.1). Then the following statements are

true:

(1) If all roots of Eq. (2.3) lie in the open disk ŒkŒ < 1, then �x
is locally asymptotically stable.

(2) If at least one root of Eq. (2.3) has absolute value
greater than one, then �x is unstable.

Theorem 2.3 [6]. Consider the third-degree polynomial equation

k3 þ a2k
2 þ a1kþ a0 ¼ 0; ð2:4Þ

where a0, a1 and a2 are real numbers. Then a necessary and suf-
ficient condition that all roots of Eq. (2.4) to lie inside the open
disk ŒkŒ < 1 is

ja2 þ a0j < 1þ a1; ja2 � 3a0j < 3� a1; a20 þ a1 � a0a2 < 1:

Theorem 2.4. Consider the difference equation

xnþ1 ¼ fðxn�1; xn�2Þ; n ¼ 0; 1; . . . ð2:5Þ

Let [a, b] be an interval of real numbers and assume that

f : ½a; b� � ½a; b� ! ½a; b�

is a continuous function satisfying the following properties:

(1) f(x, y) is non-decreasing in x 2 [a, b] for each y 2 [a, b]
and f(x, y) is non-increasing in y 2 [a, b] for each

x 2 [a, b];
(2) If (m, M) 2 [a, b] · [a, b] is a solution of the system

fðm;MÞ ¼ m and fðM;mÞ ¼M;

then m =M.Then Eq. (2.5) has a unique equilibrium
�x 2 ½a; b� and every solution of (2.5) converges to �x.

The change of variables xn ¼ C
D
yn reduces Eq. (1.1) to the

difference equation

ynþ1 ¼
p� qyn�1
�1þ yn�2

; n ¼ 0; 1; . . . ð2:6Þ

where p ¼ AD
C2 and q ¼ B

C
.

In what follows, we will only consider the solutions corre-

sponding to admissible initial conditions which will be called
admissible solutions.

The stability is refereed to the set of admissible solutions.

3. The difference equation ynþ1 ¼ p�qyn�1
1þyn�2

In this section we study the global attractivity of the difference
equation

ynþ1 ¼
p� qyn�1
1þ yn�2

; n ¼ 0; 1; . . . ð3:1Þ

We can see that the equilibrium points of Eq. (3.1) are the

zeros of the function

f1ð�yÞ ¼ �y2 þ ð1þ qÞ�y� p:

That is

�y1 ¼
1

2
ð�ð1þ qÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ qÞ2 þ 4p

q
Þ

and

y2 ¼
1

2
ð�ð1þ qÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ qÞ2 þ 4p

q
Þ:

The linearized equation associated with Eq. (3.1) about yi,
i= 1, 2 is

znþ1 þ
q

1þ yi
zn�1 þ

yi
1þ yi

zn�2 ¼ 0; n ¼ 0; 1; . . . ð3:2Þ

Its associated characteristic equation is

k3 þ q

1þ yi
kþ yi

1þ yi
¼ 0: ð3:3Þ

Suppose that

giðkÞ ¼ k3 þ q

1þ yi
kþ yi

1þ yi
¼ 0; i ¼ 1; 2:
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