

Egyptian Mathematical Society

Journal of the Egyptian Mathematical Society

www.etms-eg.org www.elsevier.com/locate/joems

REVIEW PAPER

On fuzzy almost continuous convergence in fuzzy function spaces

A.I. Aggour *

Department of Mathematics, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt

Received 23 September 2012; revised 14 April 2013; accepted 14 April 2013 Available online 20 June 2013

KEYWORDS

Fuzzy almost continuity Fuzzy net Fuzzy almost continuously convergence Fuzzy almost splitting topologies Fuzzy almost jointly continuous topologies **Abstract** In this paper, we study the fuzzy almost continuous convergence of fuzzy nets on the set FAC(X, Y) of all fuzzy almost continuous functions of a fuzzy topological space X into another Y. Also, we introduce the notions of fuzzy splitting and fuzzy jointly continuous topologies on the set FAC(X, Y) and study some of its basic properties.

2010 MATHEMATICS SUBJECT CLASSIFICATION: 54A20, 54A40, 54C35

© 2013 Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society. Open access under CC BY-NC-ND license.

Contents

1.	Introduction and preliminaries	331
2.	Fuzzy almost continuous functions	331
3.	Fuzzy function spaces	332
	Acknowledgement	333

1. Introduction and preliminaries

Throughout this paper X and Y mean fuzzy topological spaces (fts, for short). The concepts of fuzzy points [1], quasi-conici-

* Tel.: +20 233886152.

ELSEVIER

E-mail address: atifaggour@yahoo.com

Peer review under responsibility of Egyptian Mathematical Society.

Production and hosting by Elsevier

dence [2] and fuzzy nets [3] have proven to be suitable notions for several extensions.

Let X be a set. A fuzzy subset A of X is characterized by a membership function $A: X \rightarrow I$, where I = [0, 1]. The set of all fuzzy subsets of X will be denoted by I^X .

Let *A* be a fuzzy subset of *X*. The fuzzy set *A'*, where A'(x) = 1 - A(x), for every $x \in X$, is called the complement of *A*. Let *f*: $X \to Y$ be a map. Then we have that:

- (i) For a fuzzy subset B of Y, $f^{-1}(B)$ is defined as follows: $f^{-1}(B)(x) = B(f(x)), \forall x \in X,$
- (ii) For a fuzzy subset A of X, f(A) is defined as follows:

1110-256X © 2013 Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society. Open access under CC BY-NC-ND license. http://dx.doi.org/10.1016/j.joems.2013.04.003

$$f(A)(y) = \begin{cases} \sup_{x \in X} \{A(x) | f(x) = y\} & \text{if } f^{-1}(y) \neq \phi \\ 0 & \text{if } f^{-1}(y) = \phi. \end{cases}$$

Let X, Y and Z be a fuzzy topological spaces and F: $X \times Y \to Z$ be a map, then by F_{x_t} , where x_t is a fuzzy point in X, we denote the fuzzy continuous map of Y into Z, for which $F_{x_t}(y_r) = F(x_t, y_r)$, for every fuzzy point y_r in Y. Also, by \hat{F} we denote the map of X into the set FAC(Y, Z) for which $\hat{F}(x_t) = F_{x_t}$, for every x_t in X. Let G be a map of the space X into the set FAC(Y, Z). By \tilde{G} we denote the map of the space $X \times Y$ into the space Z, for which $\tilde{G}(x_t, y_r) = \hat{G}(x_t)(y_r)$ for every fuzzy point x_t in X and y_r in Y.

If \mathfrak{I} is a fuzzy topology on the set FAC(X, Y), then $FAC_{\mathfrak{I}}(X, Y)$ is called a fuzzy function space.

For any two fuzzy topological spaces X and Y, the map $e: FAC_{\mathfrak{Z}}(X, Y) \times X \to Y$; $(f, x_t) \mapsto f(x_t)$ is called a fuzzy evaluation map.

Definition 1.1 [1]. A fuzzy point x_t in X is a fuzzy set defined as follows:

$$x_t(y) = \begin{cases} t & \text{if } y = x \\ 0 & \text{otherwise} \end{cases}$$

where, $0 < t \le 1$, *t* is called its value and *x* is its support. The set of all fuzzy points in *X* is denoted by Pt(X).

Definition 1.2 [4]. A fuzzy topology \mathfrak{F} on X is a family of fuzzy subsets of X such that:

- (i) \mathfrak{F} contains all constant fuzzy subsets of X,
- (ii) $A \cap B \in \mathfrak{F}$, for each $A, B \in \mathfrak{F}$,
- (iii) If $\{A_{\lambda}\}_{\lambda \in \Lambda}$ is a subfamily of \mathfrak{F} , then $\bigcup_{\lambda \in \Lambda} A_{\lambda} \in \mathfrak{F}$.

The pair (X, \mathfrak{F}) is called a fuzzy topological space denoted by fts [4].

Definition 1.3 [2]. A fuzzy subset A of X is called a neighborhood (or nbd) of a fuzzy point x_t iff there exists a fuzzy open set V in X such that $x_t \in V \subseteq A$. Also, x_t is called quasi-coincident with A, denoted by $x_tq A$ if t + A(x) > 1. A is called a quasi-neighborhood, denoted by Q-nbd of x_t , if there exists a fuzzy open set V in X such that $V \subseteq A$ and $x_tq V$.

Definition 1.4 [5]. Let *f* be a map of *X* into *Y*. Then *f* is called fuzzy almost continuous at $x_t \in Pt(X)$ iff for every fuzzy open nbd *V* of $f(x_t)$ there exists a fuzzy open nbd *U* of x_t such that $f(U) \subseteq int(cl(V))$.

Definition 1.5 [6]. A fuzzy subset V of a fuzzy topological space (X, τ_X) is called a fuzzy regular open if int(cl(V)) = V and V is regular closed if V = cl(int(V)).

Definition 1.6 [6,9]. A mapping $f: (X, \tau_X) \to (Y, \tau_Y)$ from an fts X into another Y is called fuzzy almost continuous if $f^{-1}(U) \in \tau_X$, for each fuzzy regular open subset U of Y.

Definition 1.7 [3]. Let (D, \leq) be a directed set, *X* be a set and Pt(X) be the set of all fuzzy points in *X*. The function *S*: $D \rightarrow Pt(X)$ is called a fuzzy net in *X* denoted by $\{S(n): n \in D\}$ or $\{S_n: n \in D\}$.

Definition 1.8 [7]. A fuzzy net { $S(n): n \in D$ } in a fuzzy topological space X is said to be fuzzy weak θ -converges to x_t in X if for every fuzzy open nbd V of x_t there is some $n_0 \in D$ such that $S(n) \in int(cl(V))$, for every $n \in D$, $n \ge n_0$.

Definition 1.9 [8]. Let (X, \mathfrak{F}) be an fts. A fuzzy subset U is called RQ-nbd of a fuzzy point $x_t \in Pt(X)$ iff there exists a fuzzy regular open set V in X such that $x_t q V \subseteq U$.

Definition 1.10 [8]. A fuzzy point x_t is said to be fuzzy δ -cluster point of a fuzzy subset V of an fts X iff each RQ-nbd of x_t is quasi-coincident with V. The union of all fuzzy δ -cluster points of V is defined to be δ -closure of V and denoted by $\delta - cl(V)$. If $V = \delta - cl(V)$, then V is called δ -closed fuzzy set.

Throughout this paper FAC(X, Y) denotes the set of all fuzzy almost continuous maps of X into Y.

2. Fuzzy almost continuous functions

Theorem 2.1. A map f of a space X into a space Y is fuzzy almost continuous at $x_t \in Pt(X)$ iff for every fuzzy net $\{S(n): n \in D\}$ in X which fuzzy converges to x_t , we have that the fuzzy net $\{f(S(n)): n \in D\}$ in Y fuzzy weakly θ -converges to $f(x_t)$ in Y.

Proof. Suppose that *f* is fuzzy almost continuous at $x_t \in Pt(X)$ and let $\{S(n): n \in D\}$ be a fuzzy net in *X* fuzzy converges to x_t . Then, for every fuzzy open nbd *V* of $f(x_t)$ in *Y* there exists a fuzzy open nbd *U* of x_t in *X* such that $f(U) \subseteq int(cl(V))$. Then, there exists an element $n_0 \in D$ such that $S(n) \in V$, for every $n \in D$, $n \ge n_0$. Thus, $f(S(n)) \in int(cl(V))$, for every $n \ge n_0$, $n \in D$. Therefore, the fuzzy net $\{f(S(n)): n \in D\}$ in *Y* fuzzy weakly θ -converges to $f(x_t)$.

Conversely, if the map f is not fuzzy almost continuous at $x_t \in Pt(X)$, then for some fuzzy open nbd V of $f(x_t)$, $f(U) /\subseteq int(cl(V))$, for every fuzzy open nbd U of x_t in X. Thus, for every fuzzy open nbd U of x_t we can find x_t^U such that $f(x_t^U) \notin int(cl(V))$. Let $N(x_t)$ be the set of all fuzzy open nbds of x_t in X. The set $N(x_t)$ with the relation $\{U_1 \leq U_2 \text{ iff } U_2 \subseteq U_1\}$ form a directed set. Clearly, the fuzzy net $\{x_t^U : U \in N(x_t)\}$ fuzzy converges to x_t in X but the fuzzy net $\{f(x_t^U) : U \in N(x_t)\}$ does not fuzzy weakly θ -converges to $f(x_t)$ in Y. Hence, the map f is fuzzy almost continuous at $x_t \in Pt(X)$. \Box

Definition 2.1. A fuzzy net $\{f_m: m \in D\}$ in FAC(X, Y) fuzzy almost continuously converges to $f \in FAC(X, Y)$ iff for every fuzzy net $\{S(n): n \in \land\}$ in X which fuzzy converges to $x_t \in Pt(X)$ we have that the fuzzy net $\{f_m(S(n)): (n, m) \in \land \times D\}$ fuzzy weakly θ -converges to $f(x_t)$ in Y.

Theorem 2.2. A fuzzy net $\{f_m: m \in D\}$ in FAC(X, Y) fuzzy almost continuously converges to $f \in FAC(X, Y)$ iff for every fuzzy point $x_t \in X$ and for every fuzzy open nbd V of $f(x_t)$ in Y there exist an element $m_0 \in D$ and a fuzzy open nbd U of x_t in X such that $f_m(U) \subseteq int(cl(V))$, for every $m \in D$, $m \ge m_0$. Download English Version:

https://daneshyari.com/en/article/483611

Download Persian Version:

https://daneshyari.com/article/483611

Daneshyari.com