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Abstract In this paper, we study the fuzzy almost continuous convergence of fuzzy nets on the set

FAC(X, Y) of all fuzzy almost continuous functions of a fuzzy topological space X into another Y.

Also, we introduce the notions of fuzzy splitting and fuzzy jointly continuous topologies on the set

FAC(X, Y) and study some of its basic properties.
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1. Introduction and preliminaries

Throughout this paper X and Y mean fuzzy topological spaces
(fts, for short). The concepts of fuzzy points [1], quasi-conici-

dence [2] and fuzzy nets [3] have proven to be suitable notions
for several extensions.

Let X be a set. A fuzzy subset A of X is characterized by a

membership function A: X fi I, where I= [0, 1]. The set of all
fuzzy subsets of X will be denoted by IX.

Let A be a fuzzy subset of X. The fuzzy set A0, where
A0(x) = 1 � A(x), for every x 2 X, is called the complement ofA.

Let f: X fi Y be a map. Then we have that:

(i) For a fuzzy subset B of Y, f�1(B) is defined as follows:

f�1(B)(x) = B(f(x)), "x 2 X,
(ii) For a fuzzy subset A of X, f(A) is defined as follows:
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fðAÞðyÞ ¼
sup
x2X
fAðxÞjfðxÞ ¼ yg if f�1ðyÞ–/

0 if f�1ðyÞ ¼ /:

(

Let X, Y and Z be a fuzzy topological spaces and F:
X · Y fi Z be a map, then by Fxt , where xt is a fuzzy point

in X, we denote the fuzzy continuous map of Y into Z, for
which FxtðyrÞ ¼ Fðxt; yrÞ, for every fuzzy point yr in Y. Also,
by bF we denote the map of X into the set FAC(Y, Z) for whichbFðxtÞ ¼ Fxt , for every xt in X. Let G be a map of the space X

into the set FAC(Y, Z). By eG we denote the map of the space
X · Y into the space Z, for which eGðxt; yrÞ ¼ bGðxtÞðyrÞ for
every fuzzy point xt in X and yr in Y.

If I is a fuzzy topology on the set FAC(X, Y), then
FACIðX;YÞ is called a fuzzy function space.

For any two fuzzy topological spaces X and Y, the map

e : FACIðX;YÞ � X! Y; (f, xt) ´ f(xt) is called a fuzzy
evaluation map.

Definition 1.1 [1]. A fuzzy point xt in X is a fuzzy set defined
as follows:

xtðyÞ ¼
t if y ¼ x

0 otherwise

�
where, 0 < t 6 1,t is called its value and x is its support. The

set of all fuzzy points in X is denoted by Pt(X).

Definition 1.2 [4]. A fuzzy topology F on X is a family of
fuzzy subsets of X such that:

(i) F contains all constant fuzzy subsets of X,
(ii) A \ B 2 F, for each A;B 2 F,
(iii) If {Ak}k2K is a subfamily of F, then [k2KAk 2 F.

The pair ðX;FÞ is called a fuzzy topological space denoted
by fts [4].

Definition 1.3 [2]. A fuzzy subset A of X is called a neighbor-

hood (or nbd) of a fuzzy point xt iff there exists a fuzzy open
set V in X such that xt 2 V ˝ A. Also, xt is called quasi-coinci-
dent with A, denoted by xtq A if t+ A(x) > 1. A is called a

quasi-neighborhood, denoted by Q-nbd of xt, if there exists a
fuzzy open set V in X such that V ˝ A and xtq V.

Definition 1.4 [5]. Let f be a map of X into Y. Then f is called
fuzzy almost continuous at xt 2 Pt(X) iff for every fuzzy open

nbd V of f(xt) there exists a fuzzy open nbd U of xt such that
f(U) ˝ int(cl(V)).

Definition 1.5 [6]. A fuzzy subset V of a fuzzy topological

space (X, sX) is called a fuzzy regular open if int(cl(V)) = V
and V is regular closed if V= cl(int(V)).

Definition 1.6 [6,9]. A mapping f: (X, sX) fi (Y, sY) from an
fts X into another Y is called fuzzy almost continuous if

f�1(U) 2 sX, for each fuzzy regular open subset U of Y.

Definition 1.7 [3]. Let (D, 6) be a directed set, X be a set and
Pt(X) be the set of all fuzzy points in X. The function S:
D fi Pt(X) is called a fuzzy net in X denoted by {S(n):

n 2 D} or {Sn: n 2 D}.

Definition 1.8 [7]. A fuzzy net {S(n): n 2 D} in a fuzzy topo-

logical space X is said to be fuzzy weak h-converges to xt in
X if for every fuzzy open nbd V of xt there is some n0 2 D such
that S(n) 2 int(cl(V)), for every n 2 D, n P n0.

Definition 1.9 [8]. Let ðX;FÞ be an fts. A fuzzy subset U is

called RQ-nbd of a fuzzy point xt 2 Pt(X) iff there exists a
fuzzy regular open set V in X such that xtq V ˝ U.

Definition 1.10 [8]. A fuzzy point xt is said to be fuzzy d-clus-
ter point of a fuzzy subset V of an fts X iff each RQ-nbd of xt is

quasi-coincident with V. The union of all fuzzy d-cluster points
of V is defined to be d-closure of V and denoted by d � cl(V). If
V= d � cl(V), then V is called d-closed fuzzy set.

Throughout this paper FAC(X, Y) denotes the set of all fuz-
zy almost continuous maps of X into Y.

2. Fuzzy almost continuous functions

Theorem 2.1. A map f of a space X into a space Y is fuzzy
almost continuous at xt 2 Pt(X) iff for every fuzzy net {S(n):

n 2 D} in X which fuzzy converges to xt, we have that the fuzzy
net {f(S(n)): n 2 D} in Y fuzzy weakly h-converges to f(xt) in
Y.

Proof. Suppose that f is fuzzy almost continuous at xt 2 Pt(X)

and let {S(n): n 2 D} be a fuzzy net in X fuzzy converges to xt.
Then, for every fuzzy open nbd V of f(xt) in Y there exists a
fuzzy open nbd U of xt in X such that f(U) ˝ int(cl(V)). Then,

there exists an element n0 2 D such that S(n) 2 V, for every
n 2 D, n P n0. Thus, f(S(n)) 2 int(cl(V)), for every n P n0,
n 2 D. Therefore, the fuzzy net {f(S(n)): n 2 D} in Y fuzzy

weakly h-converges to f(xt).

Conversely, if the map f is not fuzzy almost continuous at

xt 2 Pt(X), then for some fuzzy open nbd V of f(xt),
f(U) 6 # int(cl(V)), for every fuzzy open nbd U of xt in X.
Thus, for every fuzzy open nbd U of xt we can find xUt such

that f xUt
� �

R intðclðVÞÞ. Let N(xt) be the set of all fuzzy open
nbds of xt in X. The set N(xt) with the relation {U1 6 U2 iff
U2 ˝ U1} form a directed set. Clearly, the fuzzy net

xUt : U 2 NðxtÞ
� �

fuzzy converges to xt in X but the fuzzy
net f xUt

� �
: U 2 NðxtÞ

� �
does not fuzzy weakly h-converges to

f(xt) in Y. Hence, the map f is fuzzy almost continuous at
xt 2 Pt(X). h

Definition 2.1. A fuzzy net {fm: m 2 D} in FAC(X, Y) fuzzy
almost continuously converges to f 2 FAC(X, Y) iff for every
fuzzy net {S(n): n 2 � } in X which fuzzy converges to

xt 2 Pt(X) we have that the fuzzy net {fm(S(n)): (n,
m) 2 � · D} fuzzy weakly h-converges to f(xt) in Y.

Theorem 2.2. A fuzzy net {fm: m 2 D} in FAC(X, Y) fuzzy
almost continuously converges to f 2 FAC(X, Y) iff for every

fuzzy point xt 2 X and for every fuzzy open nbd V of f(xt)
in Y there exist an element m0 2 D and a fuzzy open nbd U
of xt in X such that fm(U) ˝ int(cl(V)), for every m 2 D,

m P m0.
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