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Abstract In this article, we present a survey of some new results obtained in [2,8]. First, we give a

geometric Paley—Wiener theorem for the Dunkl transform in the crystallographic case. Next we

Dunkl operator;
Paley—Wiener theorem;
Generalized translations;
Riesz potentials;

Riesz transforms

describe more precisely the support of the distribution associated to Dunkl translations in higher
dimension. We also investigate the L7 — LY boundedness properties of the Riesz potentials I}
and the related fractional maximal function M, , associated to the Dunkl transform. Finally we
prove the I”-boundedness, (1 < p < oo) of the Riesz transforms in the Dunkl setting.
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1. Introduction

Dunkl theory generalizes classical Fourier analysis on R". It
started twenty years ago with Dunkl’s seminal work [6] and
was further developed by several mathematicians. See for in-
stance the surveys [15,7] and the references cited therein.

In this setting, the Paley—Wiener theorem is known to hold
for balls centered at the origin. In [9], a Paley—Wiener theorem
was conjectured for convex neighborhoods of the origin, which
are invariant under the underlying reflection group, and was
partially proved.
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Our first result in Section 2, is a proof of this conjecture in
the crystallographic case, following the third approach in [9].

Generalized translations were introduced in [14] and further
studied in [19,16,17]. Apart from their abstract definition, we
lack precise information, in particular about their integral
representation

(N0 = [ AN, ),

which was conjectured in [14] and established in few cases, for
instance in dimension N = 1 or when f'is radial.

Our second result in Section 2 deals with the support of the
distribution 7, , in higher dimension, that we determine rather
precisely in the crystallographic case.

For 0 < o < 2y, + d, the Riesz potential I;f'is defined on
S(RY) (the class of Schwartz functions) by (see [18])

) = @y [ R, 0

where

f — 2—;-K—d/2+o< F(%) .
. Iy +4%

It is easy to see that the Riesz potentials operate on the
Schwartz class S(R"), as integral operators, and it is natural
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to inquire about their action on the spaces L”(R‘ A’). The
main problem can be formulated as follows. Given
o €10,2y, + d for what pair (p,q) is it possible to extend (1)
to a bounded operator from L”(R? i) to L!(RY,#2)? That is
when do we have the inequality

15/ leq < Cllc,p- (2)

The notation |
LP(RY, 1),

K

A necessary condition is given in [18]. This condition says
that (2) holds only if
1 1 o

P a4 . +d

«p 18 used here to denote the norm of

3)

Thangavelu and Xu proved also in [18] that the condition
(3) is sufficient to ensure the boundedness of I, (save for
p = 1 where a weak-type estimate holds) if one assumes that
the reflection group G is Z¢ or if f are radial functions and
p < 2 (see [18, Theorem 4.4]).

We will show that it is possible to remove this restrictive
hypothesis and prove that (3) is a sufficient condition for all
reflection groups.

On RY, the ordinary Riesz transform R;, j=1...Nis de-
fined as the multiplier operator

— c

RN (&) = ~it ],

<]
It can also be defined by the principal value of the singular
integral

EeRY.

e—0

ri(x — y)f(y)dy,

bize

where 7; is the singular Riesz kernel given by
N+1 ]
) = (P52 )ty b,

whose Fourier transform (in the sense of distributions) is

R(&) = —i&,/|¢).

It is a classical result in harmonic analysis that the Riesz trans-
forms are bounded on L’ for all 1 < p < oo.

In Dunkl setting the Riesz transforms (see [18]) are the
operators R;, j = 1...d defined on L*(R, i) by

() () T ),
Jpy|>e [yl
where ¢; = 220 (y 4 (d+1)/2)/v/mand m = 2y, + d + 1.

The study of the L”-boundedness of Riesz transforms for
Dunkl transform on R" goes back to the work of Thangavelyu
and Xu [18] where they established boundedness result only in
a very special case of N = 1. Recently Amri [1] proves this re-
sult in more general case.

As applications, we will prove the generalized Riesz and
Sobolev inequalies.

R;(f)(x) = ¢;lim x € R

£—

2. New results about Dunkl analysis
2.1. A geometric Paley—Wiener theorem

In this subsection, we state a geometric version of the
Paley—Wiener theorem, which was looked for in [9,19,10],

under the assumption that G is crystallographic. The proof
which was given in [2] consists merely in resuming the third ap-
proach in [9] and applying it to the convex sets considered in
[3-5] instead of the convex sets considered in [11]. Recall that
the second family consists of the convex hulls

C" =co(G - A)

of G-orbits G-A in R", while the first family consists of the po-
lar sets

Cy={xeR"(x,g-4) < Vg € G}.

Before stating the geometric Paley—Wiener theorem, let us
make some remarks about the sets C*! and C,.

Firstly, they are convex, closed, G-invariant and the follow-
ing inclusion holds.

Cct c A Cy.

Secondly, we may always assume that 4 = A belongs to the
closed positive chamber T, and, in this case, we have

C/‘ﬂF_+=F_+ﬂ<A—F),

CaNTT = {x e TH(A,x) < 1}.

Thirdly, on one hand, every G-invariant convex subset in R is
a union of sets C*! while, on the other hand, every G-invariant
closed convex subset in R is an intersection of sets C,. For

instance,
U= ¢

[A|=R |A|=R"!

B(0,R) =

Fourthly, we shall say that A € T, is admissible if the follow-
ing equivalent conditions are satisfied:

(1) A4 has nonzero projections in each irreducible compo-
nent of (R",R),
(ii) ¢ is a neighborhood of the origin,
(iii)) C, is bounded.

In this case, we may consider the gauge

74(¢) = max,ec, (x, &) = min{r € [0, +00)|¢ € rC"}

on RV,

Theorem 1. Assume that A € T, is admissible. Then the Dunkl
transform is a linear isomorphism between the space of smooth
functions f on RN with supp f< C, and the space of entire
functions h on CN such that

sup (1 + |€))Me M |p(&)] < 400 VM € N. (4)
cecV

Following [9], this theorem is first proved in the trigono-
metric case, which explains the restriction to crystallographic
groups, and next obtained in the rational case by passing to
the limit. The proof of Theorem 1 in the trigonometric case
is similar to the proof of the Paley—Wiener Theorem in
[11,12], and actually to the initial proof of Helgason for the
spherical Fourier transform on symmetric spaces of the non-
compact type. The limiting procedure, as far as it is concerned,
is described thoroughly in [9] and needs no further
explanation.
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