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Abstract In this paper, we study the qualitative behavior of some systems of second-order rational

difference equations. More precisely, we study the equilibrium points, local asymptotic stability of

equilibrium point, unstability of equilibrium points, global character of equilibrium point, period-

icity behavior of positive solutions and rate of convergence of positive solutions of these systems.

Some numerical examples are given to verify our theoretical results.
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1. Introduction and preliminaries

Recently there has been a great interest in studying the quali-

tative properties of rational difference equations. For a system-
atic study of rational difference equations we refer [1–15] and
references therein. In Refs. [16–19] qualitative behavior of

some biological models is discussed. Recently there has been
a lot of interest in studying the global attractivity, bounded-
ness character, periodicity and the solution form of nonlinear
difference equations.

Bajo and Liz [5] investigated the global behavior of differ-
ence equation:

xnþ1 ¼
xn�1

aþ bxn�1xn

;

for all values of real parameters a; b.
Aloqeili [6] discussed the stability properties and semi-cycle

behavior of the solutions of the difference equation:

xnþ1 ¼
xn�1

a� xn�1xn

; n ¼ 0; 1; . . . ;

with real initial conditions and positive real number a.
Motivated by the above studies, our aim in this paper is to

investigate the qualitative behavior of following systems of
second-order rational difference equations:

xnþ1 ¼
axn�1

b� cynyn�1
; ynþ1 ¼

a1yn�1
b1 � c1xnxn�1

; n¼ 0;1; . . . ; ð1Þ

and

xnþ1 ¼
ayn�1

b� cxnxn�1
; ynþ1 ¼

a1xn�1

b1 � c1ynyn�1
; n¼ 0;1; . . . ; ð2Þ
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where the parameters a; b; c; a1; b1; c1; a; b; c; a1; b1; c1
and initial conditionsx0; x�1; y0; y�1 arepositive real numbers.

Let us consider four-dimensional discrete dynamical system
of the form

xnþ1 ¼ fðxn; xn�1; yn; yn�1Þ; ð3Þ
ynþ1 ¼ gðxn; xn�1; yn; yn�1Þ; n ¼ 0; 1; . . . ;

where f : I2 � J2 ! I and g : I2 � J2 ! J are continuously
differentiable functions and I; J are some intervals of real

numbers. Furthermore, a solution fðxn; ynÞg
1
n¼�1 of system

(3) is uniquely determined by initial conditions ðxi; yiÞ 2 I� J
for i 2 f�1; 0g. Along with system (3) we consider the

corresponding vector map F ¼ ðf; xn; xn�1; g; yn; yn�1Þ. An
equilibrium point of (3) is a point ð�x; �yÞ that satisfies

�x ¼ fð�x; �x; �y; �yÞ;
�y ¼ gð�x; �x; �y; �yÞ:

The point ð�x; �yÞ is also called a fixed point of the vector map F.

Definition 1. Let ð�x; �yÞ be an equilibrium point of the system

(3).

(i) An equilibrium point ð�x; �yÞ is said to be stable if for

every e > 0 there exists d > 0 such that for every initial

condition ðxi; yiÞ; i 2 f�1; 0g
P0

i¼�1ðxi; yiÞ � ð�x; �yÞ
�� �� < d

implies kðxn; ynÞ � ð�x; �yÞk < e for all n > 0, where k � k
is the usual Euclidian norm in R2.

(ii) An equilibrium point ð�x; �yÞ is said to be unstable if it is
not stable.

(iii) An equilibrium point ð�x; �yÞ is said to be asymptotically

stable if there exists g > 0 such that
P0

i¼�1ðxi; yiÞ�
��

ð�x;�yÞk < g and ðxn; ynÞ ! ð�x;�yÞ as n!1.

(iv) An equilibrium point ð�x; �yÞ is called global attractor if
ðxn; ynÞ ! ð�x;�yÞ as n!1.

(v) An equilibrium point ð�x; �yÞ is called asymptotic global

attractor if it is a global attractor and stable.

Definition 2. Let ð�x; �yÞ be an equilibrium point of the map

F ¼ f; xn; xn�1; g; yn; yn�1ð Þ;

where f and g are continuously differentiable functions at
ð�x; �yÞ. The linearized system of (3) about the equilibrium point

ð�x; �yÞ is
Xnþ1 ¼ FðXnÞ ¼ FJXn;

where Xn ¼

xn

xn�1
yn
yn�1

0
BB@

1
CCA and FJ is the Jacobian matrix of the

system (3) about the equilibrium point ð�x; �yÞ.

Lemma 1 [2]. For the system Xnþ1 ¼ FðXnÞ; n ¼ 0; 1; . . . of

difference equations such let X be a fixed point of F. If all

eigenvalues of the Jacobian matrix JF about X lie inside an open

unit disk jkj < 1, then X is locally asymptotically stable. If one of

them has norm greater than one, then X is unstable.

Lemma 2 [3]. Assume that Xnþ1 ¼ FðXnÞ; n ¼ 0; 1; . . . is a

system of difference equations and X is the equilibrium point

of this system. The characteristic polynomial of this system

about the equilibrium point X is PðkÞ ¼ a0k
n þ a1k

n�1 þ � � � þ
an�1kþ an ¼ 0, with real coefficients and a0 > 0. Then all roots
of the polynomial PðkÞ lies inside the open unit disk jkj if and
only if Dk > 0 for k ¼ 0; 1; . . ., where Dk is the principal minor
of order k of the n� n matrix

Dn ¼

a1 a3 a5 . . . 0

a0 a2 a4 . . . 0

0 a1 a3 . . . 0

..

. ..
. . .

. ..
.

0 0 0 . . . an

0
BBBBBBB@

1
CCCCCCCA
: ð4Þ

The following result gives the rate of convergence of
solution of a system of difference equations

Xnþ1 ¼ ðAþ BðnÞÞXn; ð5Þ

where Xn is an m-dimensional vector, A 2 Cm�m is a constant

matrix, and B : Zþ ! Cm�m is a matrix function satisfying

kBðnÞk ! 0 ð6Þ

as n!1, where k � k denotes any matrix norm which is
associated with the vector norm

kðx; yÞk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
:

Proposition 1 (Perron’s Theorem [20]). Suppose that condition
(6) holds. If Xn is a solution of (5), then either Xn ¼ 0 for all
large n or

q ¼ lim
n!1
ðkXnkÞ1=n ð7Þ

exists and is equal to the modulus of one the eigenvalues of

matrix A.

Proposition 2 [20]. Suppose that condition (6) holds. If Xn is a
solution of (5), then either Xn ¼ 0 for all large n or

q ¼ lim
n!1

kXnþ1k
kXnk

ð8Þ

exists and is equal to the modulus of one of the eigenvalues of

matrix A.

2. On the system xnþ1 ¼ axn�1
b�cynyn�1

; ynþ1 ¼ a1yn�1
b1�c1xnxn�1

In this section, we shall investigate the qualitative behavior of

the system (1). Let ð�x; �yÞ be an equilibrium point of system (1),
then for b > a and b1 > a1 system (1) has following two

equilibrium points P0 ¼ ð0; 0Þ; P1 ¼
ffiffiffiffiffiffiffiffiffi
b1�a1

c1

q
;
ffiffiffiffiffiffi
b�a

c

q� �
.

To construct corresponding linearized form of the system
(1) we consider the following transformation:

ðxn; xn�1; yn; yn�1Þ# ðf; f1; g; g1Þ; ð9Þ

where f ¼ axn�1
b�cynyn�1

, f1 ¼ xn; g ¼ a1yn�1
b1�c1xnxn�1

; g1 ¼ yn. The

Jacobian matrix about the fixed point ð�x; �yÞ under the transfor-
mation (14) is given by

FJð�x; �yÞ ¼

0 d1 d2 d2

1 0 0 0

d3 d3 0 d4

0 0 1 0

0
BBB@

1
CCCA;
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