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Abstract In this paper, exp-function method is used to construct generalized solitary solutions of

the Zakharov–Kuznetsov–Benjamin–Bona–Mahony equation. It is shown that the exp-function

method, with the help of symbolic computation, provides a straightforward and powerful mathema-

tical tool to solve such nonlinear equations.The performance of the method is reliable, efficient and

it gives useful exact solutions.
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1. Introduction

The nonlinear partial differential equations play a pivotal role in

the mathematical modeling of diversified physical phenomena.
Finding exact solutions [1–27] of nonlinear evolution equations
(NLEEs) has become one of the most exciting and extremely

active areas of research investigation. The investigation of exact
travelling wave solutions to nonlinear evolution equations plays
a vital role in the study of nonlinear physical phenomena. The
wave phenomena are observed in fluid dynamics, plasma, elastic

media, optical fibers, etc.Many effectivemethods have been pre-
sented such as variational iteration method [1], homotopy per-
turbation method [2], Adomian’s decomposition method [3]

and others [4]. The aim of the present paper was to extend the
exp-function method to find new solitary solutions and periodic
solutions for Zakharov–Kuznetsov–Benjamin–Bona–Mahony

equation. Recently, Shakeel and Mohyud-Din [5] used the

ðG0=GÞ-expansion method to obtain solutions of Zakharov–

Kuznetsov–Benjamin–Bona–Mahony equation.

2. Exp-function method

Consider the general nonlinear partial differential equation of
the type

Pðu; ut; ux; utt; uxx; uxxx; . . .Þ ¼ 0 ð1Þ

Using a transformation

g ¼ kxþ xt; ð2Þ

where k and x are constants, we can rewrite Eq. (1) in the fol-
lowing nonlinear ODE,

Qðu; u0; u00; u000; u0000 ; . . .Þ ¼ 0 ð3Þ
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where the prime denotes derivative with respect to g.
According to the exp-function method, which was devel-

oped by He and Wu, we assume that the wave solutions can
be expressed in the following form

uðgÞ ¼
Pd

n¼�canexpðngÞPq
m¼�pbmexpðmgÞ ð4Þ

where p; q; c and d are positive integers which are known to be
further determined, an and bm are unknown constants. We can

rewrite Eq. (4) in the following equivalent form

uðgÞ ¼ acexpðcgÞ þ � � � þ a�dexpð�dgÞ
bpexpðpgÞ þ � � � þ b�qexpð�qgÞ

ð5Þ

To determine the value of c and p, we balance the linear

term of highest order of Eq. (4) with the highest order nonlin-
ear term. Similarly, to determine the value of d and q, we bal-
ance the linear term of lowest order of Eq. (3) with lowest
order nonlinear term.

3. Solution procedure

3.1. Zakharov–Kuznetsov–Benjamin–Bona–Mahony equation

Consider the following Zakharov–Kuznetsov–Benjamin–

Bona–Mahony (ZK–BBM) equation

ut þ ux � 2auux � buxxt ¼ 0: ð6Þ

Introducing a transformation as g ¼ kxþ xt we can con-
vert Eq. (6) into ordinary differential equations

xu0 þ ku0 � 2akuu0 � bk2xu000 ¼ 0; ð7Þ

where the prime denotes the derivative with respect to g.The
trial solution of the Eq. (7) can be expressed as follows,

uðgÞ ¼ acexpðcgÞ þ � � � þ a�dexpð�dgÞ
bpexpðpgÞ þ � � � þ b�qexpð�qgÞ

:

To determine the value of c and p we balance the linear
term of highest order of Eq. (7) with the highest order nonlin-

ear term and to determine the value of d and q we balance the
linear term of lowest order of Eq. (7) with the lowest order
nonlinear term. We obtain p ¼ c and d ¼ q.

3.1.1. Case 3.1.1

we can freely choose the values of c andp, we balance the linear
term of highest order of Eq. (7) with the highest order nonlin-

ear term, but we will illustrate that the final solution does not
strongly depend upon the choice of values of c and d. For sim-
plicity, we set p ¼ c ¼ 1 and d ¼ q ¼ 1 Eq. (5) reduces to

uðgÞ ¼ a1expðgÞ þ a0 þ a�1expð�gÞ
b1expðgÞ þ a0 þ b�1expð�gÞ ð8Þ

Substituting Eq. (8) into Eq. (7), we have

C1 ¼ xa1b
2
0 þ ka1b

2
0 � aka21b�1 þ 2xa0b1b0 þ 2ka0b1b0

� aka20b1 þ ka�1b
2
1 þ xa�1b

2
1 � 2aka�1a1b1 � 4bxk2a�1b

2
1

þ bxk2a0b1b0 � 2aka0a1b0 � bxk2a1b
2
0 þ 4bxk2a1b1b�1

þ 2xa1b1b�1 þ 2ka1b1b�1

C�1 ¼ xa�1b
2
0 þ ka�1b

2
0 � aka2�1b�1 þ 2xa0b�1b0 þ 2ka0b�1b0

� aka20b1 þ ka1b
2
�1 þ xa1b

2
�1 � 2aka�1a1b�1

� 4bxk2a1b
2
�1 þ bxk2a0b�1b0 � 2aka0a�1b0

� bxk2a�1b
2
0 þ 4bxk2a�1b1b�1 þ 2xa�1b1b�1

þ 2ka�1b1b�1

C2 ¼ �aka21b0 þ 2xa1b1b0 þ 2ka1b1b0 þ ka0b
2
1 þ xa0b

2
1

� bxk2a0b
2
1 þ bxk2a1b1b0 � 2aka0a1b1

C�2 � aka2�1b0 þ 2xa�1b�1b0 þ 2ka�1b�1b0 þ ka0b
2
�1 þ xa0b

2
�1

� bxk2a0b
2
�1 þ bxk2a�1b�1b0 � 2aka0a�1b�1

C3 ¼ �aka21b1 þ ka1b
2
1 þ xa1b

2
1

C�3 ¼ �aka2�1b�1 þ ka�1b
2
�1 þ xa�1b

2
�1

C0 ¼ �aka20b0 þ 2xa�1b1b0 þ 2xa0b1b�1 þ 2xa1b�1b0

þ 2ka�1b1b0 þ 2ka0b1b�1 þ 2ka1b�1b0 þ ka0b
2
0

þ xa0b
2
0 � 3bxk2a1b�1b0 � 3bxk2a�1b1b0

þ 6bxk2a0b1b�1 � 2aka0a�1b1 � 2aka1a�1b0

� 2aka0a1b�1 ð9Þ

are constants obtained by Maple 15. Equating the coefficients

of exp(ng) to be zero, we obtain

fC3 ¼ 0 C2 ¼ 0; C1 ¼ 0; C�3 ¼ 0 C�2 ¼ 0; C�1

¼ 0; C0 ¼ 0g ð10Þ

Solution of (10) we have following solution sets satisfy the

given equation,

3.1.1.1. 1st Solution set.

x¼ k
�1þk2 ; a�1¼ 0; a0¼ a0; a1¼ 0; b�1¼ 1

36

a2
0
ð1�2k2þk4Þ

k4b1
;

b0¼ 1
3

a0ð�1þk2Þ
k2

; b1¼ b1

8<
:

9=
;
ð11Þ

Figure 3.1a Singular Kink wave solution of Eq. (12).
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