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Abstract This paper obtains solutions as well as other solutions to the 3D- Gross–Pitaevskii equa-

tion, which is called the non-linear Schrodinger equation under the conditions of Kudryashov

method that appear in various areas of mathematical physics. This equation describes Bose–

Einstein condensates in the low temperature regime. These new exact solutions will complement

previous results and help further to understand the physical structures.
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1. Introduction

In the recent years, seeking exact solutions of nonlinear partial
differential equations (NLPDEs) was very important, because

the nonlinear complex physical phenomena related to the
NLPDEs are widely useful in many fields from physics,
mechanics, biology, chemistry and engineering.

To this aim, a vast variety of powerful and direct methods
to find the exact significant solutions of NLPDEs though they
are difficult to find. Some of the most important methods are

tanh- extended tanh method By Wakil [2], Fan [3] and Wazwaz
[4], solitary wave ansatz method by Biswas [5–7], tanh method

by Biswas [8,9], multiple exp-function method by Ma [10],
Kudryashov method by Malfliet [11], Ma [12], Hirota’s direct
method by Kudryashov [13,14].

The Gross–Pitaevskii equation (GPE) is a classical nonlin-
ear evolution equation. It is a variant of the famous nonlinear
Schrodinger equation (NLSE), which is a universal model gov-
erning the evolution of complex field envelopes in nonlinear

dispersive media. This article aims at considering the 3D-
Gross–Pitaevskii equation with space and time modulated
potential and nonlinearity by Manjun in [1],
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where s 2 R3; t > 0;r stands for the Laplacian operator. The
function UðxÞ describes the potential of the trap to confine the
condensate and s ¼ ðx; y; zÞ is the propagation variable and t is
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the transverse variable. The nonlinear coefficient gðs; tÞ is the
real-valued functions of time and spatial coordinates. We study
nonlinear states for the NLS-type equation with additional peri-
odic potential UðxÞ, also called the Gross–Pitaevskii equation,

GPE, in theory of Bose–Einstein Condensate, BEC. In theoret-
ical physics, the (one-dimensional) nonlinear Schrödinger equa-
tion (NLSE) is a nonlinear variation of the Schrödinger
equation. It is a classical field equation whose principal applica-

tions are to the propagation of light in nonlinear optical fibers
and planar waveguides and to Bose–Einstein condensates con-
fined to highly anisotropic cigar-shaped traps, in the mean-field

regime. Additionally, the equation appears in the studies of
small-amplitude gravity waves on the surface of deep inviscid
(zero-viscosity) water, the Langmuir waves in hot plasmas, the

propagation of plane-diffracted wave beams in the focusing
regions of the ionosphere, the propagation of Davydov’s
alpha-helix solitons, which are responsible for energy transport
along molecular chains, and many others. More generally, the

NLSE appears as one of universal equations that describe the
evolution of slowly varying packets of quasi-monochromatic
waves in weakly nonlinear media that have dispersion

2. Method applied

The purpose of this section is to present the algorithm of the

modified Kudryashov method to find exact solutions of the
nonlinear evolution equations. To do so we follow [15] by
Malfliet, Ma [16,17] by Kudryashov.

Let us consider the nonlinear partial differential equation in
the form

Eðut; ux; . . . ; x; tÞ ¼ 0: ð2Þ

We use the following ansatz

u ¼ UðnÞeiðaxþbtÞ; n ¼ x� ct; ð3Þ

From Eq. (2) we obtain the ordinary nonlinear differential

equation

/ð�cU0ðnÞeiðaxþbtÞ þ ibUeiðaxþbtÞ;U0ðnÞeiðaxþbtÞ þ iaUeiðaxþbtÞ; . . .Þ:
ð4Þ

Now we show how one could obtain the exact solution of the

Eq. (4) using the approach by modified Kudryashov method.
This method is consisted of the following steps [15] by Malfliet
and Ma [16].

1.2. Determination of the dominant term

To find dominant terms we substitute

U ¼ np; ð5Þ

into all terms of Eq. (4). Then we compare degrees of all terms in
Eq. (4) and choose twoormorewith the smallest degree. Themin-
imum value of P define the pole of solution for Eq. (4) and we

denote it as N. We have to point out that method can be applied
when N is integer. If the value N is noninteger one can transform
the equation not only study the procedure but also repeat it.

2.2. The solution structure

We look for exact solution of Eq. (4) in the form

U ¼ a0 þ a1QðnÞ þ a2Q
2ðnÞ þ � � � þ aNQ

NðnÞ; ð6Þ

where ai are unknown constants to be determined later, such

that aN – 0, while QðnÞ have the form

QðnÞ ¼ 1

1þ en
; ð7Þ

These functions satisfy to the first order ordinary differential
equations (Riccati equations)

Q0ðnÞ ¼ Q2ðnÞ �QðnÞ; ð8Þ

Eq. (8) are necessary to calculate the derivatives of functions
QðnÞ.

Remark 1. This Riccati equation also admits the following

exact solutions:

Q1ðnÞ ¼
1

2
1� tanh

n
2
� e ln n0

2

� �� �
; n0 > 0;

Q2ðnÞ ¼
1

2
1� coth

n
2
� e ln n0

2

� �� �
; n0 < 0;

ð9Þ

3.2. Derivatives calculation

We should calculate all derivatives of functions QðnÞ. One can
do it by the computer algebra systems Maple or Mathematica.

For example, we consider the general case when N is arbitrary.
Differentiating the expressions (7) with respect to n taking into
account (8) we have

Q0ðnÞ ¼
XN
i¼1

aiiðQ� 1ÞQi;

Q00ðnÞ ¼
XN
i¼1

aiiððiþ 1ÞQ2 � ð2iþ 1ÞQþ iÞQi;

ð10Þ

The high order derivatives of functionsQðnÞcan be found in
Refs. [18] by Kudryashov and Hirota [19].

4.2. Defining the values of unknown parameters

We substitute expressions (10) in Eq. (6). After it we take QðnÞ
from (10) into account. Thus Eq. (6) takes the form

P½QðnÞ�;

where P½QðnÞ� is a polynomial of functions QðnÞ. Then we col-
lect all terms with the same powers of functions QðnÞ and
equate these expressions equal to zero. As a result we obtain
system of algebraic equations. Solving this system we get the
values of unknown parameters.

3. Our method to the 3D- Gross–Pitaevskii equation with

periodic potential

To seek exact analytical wave solutions of Eq. (1) we take the
similarity transformation [15] by Malfliet,

�hðx; y; z; tÞ ¼ wðnÞeikðaxþcyþkzþbtÞ; n ¼ xþ yþ z� ct ð11Þ

We substitute Eq. (11) into Eq. (1) and obtain the following
ordinary differential equation

3w00 þ i½kðaþ cþ kÞ � c�w0 � ½k2ða2 þ c2 þ k2Þ
þ kbþ 2U�w� gw3 ¼ 0; ð12Þ
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